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ABSTRACT OF THE DISSERTATION 

Effects of Nucleosome Structure on DNA Photoproduct Formation and Deamination 

by 

Kesai Wang 

Doctor of Philosophy in Chemistry 

Washington University in St. Louis, 2017 

Professor John-Stephen Taylor 

Cyclobutane pyrimidine dimers (CPDs) are DNA photoproducts linked to skin cancer, whose 

mutagenicity depends in part on their frequency of formation and deamination. Nucleosomes 

modulate CPD formation, favoring outside facing sites, and disfavoring inward facing sites. A 

similar pattern of CPD formation in protein-free DNA loops suggest that DNA bending causes the 

modulation of photoproduct formation in nucleosomes. To systematically study the cause and 

effect of nucleosome structure on CPD formation and deamination, we had developed a circular 

permutation synthesis strategy for positioning a target sequence at different superhelix locations 

(SHLs) across a nucleosome in which the DNA has been rotationally phased with respect to the 

histone octamer by TG motifs. We had used this system to show that the nucleosome dramatically 

modulates CPD formation in a T11-tract that covers one full turn of the nucleosome helix at seven 

different SHLs, and that the position of maximum CPD formation at all locations is shifted to the 

5’-side of that found in mixed-sequence nucleosomes. We have also shown that an 80-mer 

minicircle DNA using the same TG motifs faithfully reproduces the CPD pattern in the 

nucleosome, indicating that it is a good model for protein-free rotationally phased bent DNA of 

the same curvature as in a nucleosome, and that bending is modulating CPD formation. 

Furthermore, we have used the mono-nucleosome system to show that nucleosome moderately 
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modulates TC CPD deamination in poly (TC)n (n = 6 and 35) tracts that covers almost all seven 

SHLs in one full nucleosome helix. Unlike a previous study of deamination at TCG sites, the 

position of maximum CPD deamination rate is shifted 3 nucleotides to the 5’-side of the base pairs 

whose major groove face the nucleosome. 
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Chapter 1 Introduction 

1.1 Motivation 

Skin cancer is the most common cancer in the United States (1). It is estimated that one in five 

Americans will develop skin cancer in their lifetime and that nearly 9,500 people in the U.S. are 

diagnosed with skin cancer every day (2,3). There are mainly two types of skin cancers, melanoma 

and keratinocyte carcinoma (including 20% of squamous and 75% of basal cell carcinoma). 

Keratinocyte carcinoma accounts for most skin cancers diagnosed, and are highly curable if 

detected early and treated properly. In contrast, melanoma accounts for majority of skin cancer 

deaths, whose five-year survival rates for regional and distant stage are 62% and 18%, respectively 

(4). 

High exposure to either natural or artificial ultraviolet (UV) radiation is a risk factor for 

skin cancers, especially for keratinocyte carcinoma. This risk can be reduced simply by minimizing 

skin exposure to UV radiation, such as by applying sunscreen; however, commercially available 

sunscreens only provides reliable protection against UVB and little protection against UVA. There 

are other less controllable risk factors, including personal/family history of skin cancers (especially 

melanoma), skin sun-sensitivity, and previous sunburns (4). Increased exposure to UV light almost 

certainly leads to the increased incidence of all types of skin cancers (5). One of the main molecular 

mechanisms involved in photocarcinogenesis is the signature C to T or CC to TT mutations that 

are frequently observed in tumor-suppressor genes and thought to arise from CPDs (6). 

Furthermore, UV contributes to photoaging, characterized by wrinkles, loss of skin tone and 

resilience. 
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Most living organisms on the surface of the earth are exposed to UV radiation at some 

point in their life cycle. Therefore, it is extremely meaningful to systematically investigate the 

formation frequency of UV-induced DNA photoproducts, as well as their subsequent deamination 

rates as they relate to C to T or CC to TT signature UV mutations associated with skin cancers. In 

the following sections, I will consider the background in more details and describe other studies 

so that readers can understand my dissertation studies. 

1.2 Background 

1.2.1 Photophysics of skin and ultraviolet (UV) light  

Skin is the largest and highly protective organ in human body and highly protective (Figure 1.1). 

The thin epidermis (or the outermost layer of skin) contains melanocytes that can generate melanin, 

the pigment that determines our skin color and protects us from UV by light absorption. The dermis 

beneath the epidermis is, in contrast, a thick layer containing connective tissue, hair follicles, and 

sweat glands that provides UV-protection by light-scattering (6). The penetration of UV into skin 

is wavelength-dependent. 

Conventionally, the UV spectrum (Figure 1.2) of sunlight is divided into short wavelengths 

UVC (200 < λ < 280 nm), middle wavelengths UVB (λ = 280–320 nm), and long wavelengths 

UVA (320 < λ < 400 nm) (7,8). UVC is extremely efficient at forming DNA photoproducts, but 

can be completely absorbed by the ozone layer. UVB is mostly absorbed by the ozone layer, 

whereas UVA passes the ozone layer without absorption. Consequently, only UVA (95% of 

terrestrial sunlight) and UVB (5% of terrestrial sunlight) can finally reach the surface of earth and 

are thus the primary photocarcinogenic agents (9). UVA, due to its long wavelength, penetrates 
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the most deeply into the skin with little scattering in the dermis layer compared with middle 

wavelength UVB.  

The type (or chemical nature), formation frequency and mechanism of UV-induced DNA 

damage are wavelength-dependent. UVB and high energy UVC mainly induce cis-syn cyclobutane 

pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts [(6-4) photoproducts; 

(6-4)PPs], with (6-4)PPs in significantly lower abundance (10,11). UVA radiation can also induce 

CPDs albeit mainly TT CPDs and at much lower levels, compared with UVB (12-15). Both UVA 

and UVB can also promote oxidative DNA damages (16). All in all, as determined in studies using 

laser irradiation, CPDs are the principal DNA lesions produced by terrestrial sunlight (9). 

1.2.2 Cyclobutane pyrimidine dimers (CPDs) and photocarcinogenesis 

CPDs form between two adjacent pyrimidines via [2 + 2] cycloaddition (Figure 1.3), in which the 

4  electrons of 2 C5-C6 double bonds form a 4-membered ring. A previous study in our group 

found that the formation of a CPD causes approximately 7-9° deformation relative to the B-form 

DNA structure at the lesion site (17). Compared with (6-4)PPs that cause 44° deformation (18), 

the structural disruptions by CPDs are relatively small and difficult to be recognized and repaired, 

making them potential mutagenic.  

There are four types of CPDs between adjacent pyrimidines, depending on the spatial 

alignment of the two bases and their conformations around the N-glycosidic bond (Figure 1.4). 

Among them, the cis-syn CPD (with anti-anti glycosyl conformations) is the predominant type in 

double-stranded DNA, owing to geometric constraints (19-21). Depending on the sequence content, 

there are four types of cis-syn CPDs, namely TT, TC, CT, and CC. Under UVB irradiation, the 

overall relative proportion of CPDs forming at TT, TC, CT and CC sites is ∼28, ∼26, ∼16 and 
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∼30%, respectively (13). Although cis-syn TT CPD is the most abundant type, C-containing CPDs 

are the most photocarcinogenic ones that generate the C-to-T or CC-to-TT signature mutations 

found in skin cancer patients (22).  

There are two principal mechanisms that have been proposed to explain the origin of these 

UV signature mutations. One is called the “tautomer-bypass mechanism” in which the C in a CPD 

adopts a tautomeric form that resembles T, which would direct the erroneous insertion of A during 

regular DNA replication thereby causing a C to T mutation (23,24). The other mechanism is the 

“deamination-bypass mechanism”, which is proposed by our group and summarized in Figure 1.5. 

Unlike T=T CPDs which are chemically stable, the cytosine in C-containing CPDs can rapidly 

deaminate to a uracil within hours to days (25), which then directs the insertion of an adenine in 

the opposite strand by polymerase η in an error-free way (26). To summarize, the two mechanisms 

leading to mutations are: 1) direct error-prone replication of the CPD; 2) deamination of C within 

the CPD followed by error-free replication of the deaminated DNA photoproduct. 

Chemically, C or mC deamination occurs in three steps under acidic conditions: protonation 

of C at N3 position, followed by a water attack at C4, and the loss of ammonia resulting in the 

formation of U (Figure 1.6). Mechanistically, the presence of a saturated 5,6 bond in the dimer as 

well as the presumably reduced hydrogen bonding and base stacking in a CPD most likely lead to 

increased nucleophilic attack by a hydroxide ion or water molecule at the C4 of the exposed 

cytosine base (27). Various studies by our group and others have shown that the deamination rates 

highly depend on the sequence context, pH, temperature and salt concentration (25,27,28). For 

example, a 3’-C deaminates faster than a 5’-C, and a G flanking the C accelerates deamination in 

duplex DNA owing to the catalysis of the O6-carbonyl group on the G (25). Furthermore, high salt 
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concentrations slow down the deamination presumably by stabilizing the duplex structure and 

thereby inhibiting protonation of C and addition of water. The overall frequency of C to T or CC 

to TT mutations depends on the competition between the rate of C-containing CPD formation, the 

rate of deamination, repair and translesion synthesis by polymerase η. When the UV-induced 

mutations affect the function of sufficient oncogenes and tumor suppressor genes, transformation 

of the keratinocytes and the melanocytes occurs (6,29). Besides direct mutation of genes, reduced 

level of DNA repair, or reduced time left for DNA repair in cell cycles caused by UV-altered cell 

signaling may also affect mutation frequency and lead to skin cancers (30).  

Every living cell is potentially cancerous, but a functioning tumor suppressor gene (TSG, 

or antioncogene) protects a cell from one step on the path to cancer. When mutation causes loss or 

reduction of TSG function, a normal cell can progress to a cancer cell. Several TSGs are involved 

in photocarcinogenesis, including p53 and PTGH genes that are responsible for keratinocyte 

carcinoma, and p16 gene that is responsible for melanoma (6). It is worth mentioning that the status 

of the entire pathways regulated by these genes plays a more dominant role in photocarcinogenesis 

as opposed to the status of the genes themselves (31). For example, p53 protein binds DNA and 

stimulates production of a protein called p21, which can interact with a cell division-stimulating 

protein (cdk2) that causes the arrest of cell division, to enable time for repair. Mutant p53 protein 

cannot bind DNA effectively, resulting in less or no production of the p21 protein. Therefore, cells 

will divide uncontrollably, and acquire additional mutations that lead to tumors (32). 

1.2.3 DNA damage and repair in human cells and in vitro 

Luckily, the mutagenic consequences are minimized by various repair pathways in humans, among 

which, nucleotide excision repair (NER) is the sole repair system for bulky DNA adducts such as 

TT CPDs and (6-4)PPs (33). NER repairs DNA by making dual incisions on both sides of the 
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lesion with an excision nuclease. The damaged nucleotide is released in an oligomer (27-29 nt in 

eukaryotes), and the resulting gap is then filled in and sealed (33). Uracil in DNA originates from 

deamination of cytosine can be repaired via base excision repair (BER) by uracil-DNA glycosylase 

(UDG) present in human cells. In this repair pathway, the single uracil is removed by UDG that 

hydrolyzes the glycosylic bond, resulting in an abasic site (AP site) which can then be removed by 

AP lyase, and thus the nucleotide is replaced.  

In our experiments, we made use of the cis-syn CPD-specific DNA repair enzymes not 

found in humans, DNA photolyase (34) and T4 endonuclease V (or T4 pyrimidine dimer 

glycosylase; T4-pdg) (35). Photolyase is a photoreactivating enzyme that breaks the 4-membered 

cyclobutane ring and converts a CDP back to 2 pyrimidines under black light (mainly long 

wavelength UVA and not much visible light). Mechanistically, photolyase acts by bending the 

DNA and flipping out the pyrimidine dimer from the double helix into the active site of the enzyme 

after which the cyclobutane ring is cleaved through a photocatalytic electron transfer process 

(36,37).  

In the dissertation, photolyase is used for photoreversing CPDs in order to detect the 

presence of uracil resulting from the deamination of cytosine in a CPD, using UDG cleavage 

(Figure 1.7). Briefly, after UVB irradiation, the C-containing CPDs were allowed to deaminate for 

specific times at certain a temperature and pH condition. Then the CPDs were photo-reverted to 

non-dimerized ones containing C or U depending on the extent of deamination, by use of E. coli 

photolyase. Following that, the DNA was treated with E. coli UDG to release the U and generate 

an AP-site, which was then further treated with hot piperidine to lead to strand cleavages at AP-

sites. Lastly, the 32P-labeled cleavage products of different lengths were separated and visualized 

by gel electrophoresis. 
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 T4-pdg locates and binds to pyrimidine dimers in dsDNA (ds, double strand DNA) due to 

locally perturbed structures. The enzyme then cleaves the N-glycosylic bond of the 5´ pyrimidine 

of the dimer with its glycosylase activity and then breaks the phosphodiester bond 3´ to the 

resulting AP-sites with its AP lyase activity (Figure 1.8) (38). T4-pdg is used in this dissertation 

for detection of cis-syn CPDs in dsDNA generated by UVB irradiation. Again, despite its AP lyase 

activity, hot piperidine treatment was applied after enzymatic degradation to ensure complete 

strand cleavage. 

1.2.4 DNA packaging in chromatin 

To compact the long DNA strands inside eukaryotic cells, genomic DNA is incorporated into 

chromatin in the nuclei. In a diploid human cell, 6 billion base pairs of DNA are packaged into 23 

pairs of chromosomes (39). Given that each base stack is about 0.34 nm, the length of human DNA 

when extended would be 2 meters! Thanks to the histone proteins, chromosomal DNA can be 

condensed into the microscopic space of the nucleus (10 microns in diameter), resulting in a DNA-

protein complex called chromatin. The condensation process is believed to involve several key 

steps as summarized in Figure 1.9 (39). First, the genomic DNA forms a “bead-on-a-string” 

structure by assembling with histones mainly via electrostatic interactions, resulting in a five- to 

ten-fold compaction of the DNA. In this process, the DNA wraps around histone octamers to form 

a string of nucleosome core particles (NCP), each of which has a cross-section diameter of about 

11 nm. The H1 linker histone is attached to the entry and exit points of the nucleosomal DNA, 

acting like a “lock” to maintain the structure. The DNA between two adjacent nucleosome core 

particles is called the linker DNA, and varies in size between 20 to 60 bp. As demonstrated by 

high-resolution X-ray structural analysis, each nucleosome, which contains both the nucleosome 

core particle and the linker DNA, compacts around 200 bp of DNA into almost two left-handed 
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superhelical turns (40). In a second step, the poly-nucleosome string is folded into a “30-nm 

chromatin fiber” resulting in a net compaction of about 50-fold. This 30-nm fiber serves as a 

protofiber to produce coiled fibers of larger sizes in higher-order structures, which are eventually 

condensed into chromosomes. 

Given the compact state of DNA in chromatin, one may wonder how replication and 

transcription machineries overcome barriers and access the individual strands of DNA. While the 

initiation of these processes in the context of chromatin is not fully understood, it is likely that 

chromatin remodeling plays a role in the spatial and temporal control of initiation of replication 

(41). During S phase of the cell division cycle when the entire genomic DNA is replicated, it is 

widely assumed that the chromatin is locally and transiently disassembled to free the DNA to allow 

for the passage of a replication fork (42). 

 Compaction of DNA into chromatin not only packages the genetic information, but also 

provides an additional level for the control of gene expression (43). Histone posttranslational 

modifications (PTMs), or commonly viewed as “histone epigenetic code”, play a key role in 

transcription activation and silencing by regulating chromatin structure and accessibility (44-46). 

Histone modifications, including methylation, acetylation, phosphorylation and ubiquitination of 

basic amino acids (lysine and arginine), have the effect of altering the charge of the core histones 

and may thus influence chromatin structure through an electrostatic mechanism. Histone 

modifications also function by influencing the ability of regulatory complexes to come into contact 

with chromatin (45). For example, acetylation of Lys 14 in histone H3 can direct the binding of 

the ATP-dependent nucleosome-remodeling complex, thereby stimulating the gene activation (47).  
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In eukaryotic cells, there are two types of chromatin: heterochromatin and euchromatin. 

Heterochromatin is a tightly packed chromatin localized to nuclear envelope, characterized by 

hypoacetylation and hypomethylation of lysines 4 and 79 of histone H3 in Saccharomyces 

cerevisiae (48), and is silent in transcription. Euchromatin is a lightly packed chromatin with 

numerous PTMs and is often under active transcription. From the structural perspective, 

euchromatin is made of highly heterogeneous histones, whereas heterochromatin, in contrast, is 

made of highly homogeneous histones. This is also why chicken erythrocytes containing 

exclusively heterochromatin were chosen as the source of nucleosomal core particles in our study. 

Unlike mature human red blood cells that do not possess nuclei, evolution allows birds to keep 

their nuclei in mature red blood cells. The sole function of these cells is to transport oxygen with 

a protein called haemoglobin that was expressed in “precursor” red blood cells, and thus the mature 

red blood cells are not involved in active transcription. Therefore, in chicken erythrocytes, the 

chromatin is almost completely repressed heterochromatin that lacks modifications. Upon 

enzymatic digestion or physical fragmentation, heterochromatin produces very homogeneous 

nucleosome core particles, with which we carried out all experiments.  

To prepare nucleosome core particles from chicken erythrocytes, we adopted a simplified 

protocol previously developed in Smerdon lab at Washington State University. In their original 

protocol, the whole procedure involves isolation of nuclei from chicken erythrocytes, chromatin 

digestion by Micrococcal Nuclease (MNase) to generate nucleosome, depletion of linker histone 

H1, purification of nucleosome core particles through ion-exchange and gel-filtration 

chromatography. The biggest disadvantage is that the overall procedure is extremely time 

consuming due to the tedious enzymatic digestion steps and resulting purification to remove 

MNase. In our simplified protocol, we replace the MNase digestion with physical fragmentation 
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by sonication so that no contaminant MNase is introduced in the purification step. As a result, the 

laborious gel-filtration step is omitted, and a great amount of time is saved by leaving out two 

rounds of enzymatic digestion. The nucleosome core particles prepared by the simplified method 

are obtained with quality and in high yields, and are stable for at least a year when stored at 4 ºC. 

1.2.5 Nucleosome structure and DNA positioning 

As the basic repeating unit of chromatin, a nucleosome core particle (NCP) is made of two 

parts: a histone octamer that is made of two copies of each of histones H2A, H2B, H3 and H4, as 

is shown in different colors in Figure 1.10, and a 147 bp DNA wrapping approximately 1.65 times 

around the octamer (49). The nucleosome core particle, or NCP, has a C2 symmetry axis called 

the dyad axis. Relative to the dyad axis, there are different superhelical locations (SHLs). 

Conventionally, the super helix on dyad axis is assigned as SHL 0. The superhelices to the 5’-side 

of DNA include SHL -1, -2, -3, so on and so forth, and to the 3’-side, negative numbers. On average, 

there are ten base pairs within each superhelix, each posing a unique rotation angle relative to the 

histone surface, and therefore, there are ten rotational positions (Figure 1.11) in each SHL. Again, 

the base pair on the dyad axis is numbered 0. The bases to the 5’-side are assigned negative 

numbers, and to the 3’-side, positive numbers. This numbering system for SHL and rotational 

positions will be repeatedly used throughout this dissertation. 

All four core histones share a similar structural motif constructed from three α helices 

connected by two loops, denoted by α1-L1-α2-L2-α3. The histone octamer has a molecular weight 

of approximately 108 kDa, and is divided into four “histone-fold” dimers defined by H3-H4 and 

H2A-H2B histone pairs. In the assembly, two H3-H4 pairs interact through a 4-helix bundle and 

form a H3-H4 tetramer. Each H2A-H2B pair interacts with the tetramer through a second 4-helix 

bundle and form the histone octamer. The histone-fold regions of the H3–H4 tetramer bind to the 
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center of the DNA covering SHL - 3 to +3, whereas those of the H2A–H2B dimers bind from -6 

to -3 and +3 to +6 (49). 

 Summarizing from the high-resolution crystal structure, five predominant histone-DNA 

interactions are observed (40): (1) electrostatic interactions between the positive charge generated 

by the histone helix dipole and the negative charge generated by the DNA phosphate backbone; 

(2) hydrogen-bonding between the DNA phosphates and the amide nitrogen atoms; (3) insertion 

or penetration of the arginine side chains from either the histone-folds or the histone tails into the 

DNA minor groove; (4) extensive non-polar contacts between the deoxyribose groups of the DNA 

and non-polar amino acid side chains; (5) frequent salt links between the DNA phosphate oxygen 

atoms and protein basic and hydroxyl side chain groups. 

 The binding affinity of DNA around histones and the nucleosome organization are highly 

sequence-dependent both in vivo and in vitro (50,51). Several nucleosome positioning sequences 

in genomic DNA have been identified in the most stable nucleosomes, including TATA 

tetranucleotides and CA repeats (52). Artificial positioning sequences showing high binding 

affinities have also been utilized to incorporate DNA into rotationally phase nucleosomes, 

including TG motifs and “601 Widom DNA sequences” (53,54). The TG motif, 

(A/T)3NN(G/C)3NN, is widely used for its superior ability to rotationally phase nucleosomes in 

vitro. The ten nucleotides make up one full nucleosomal helical turn, with the major groove of the 

G·C base pairs preferentially facing the histone octamer surface, which is consistent with its 

tendency to bend into the major groove. In contrast, the minor groove of the A·T base pairs has a 

strong preference for facing the histone octamer surface, which is consistent with its tendency to 

bend into the minor groove. In the dissertation, all nucleosomal binding sequences were designed 

based on TG bending motifs. 
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 To determine the rotational positioning of nucleosomes, both chemical and enzymatic 

approaches have been developed, among which, DNase I mapping and hydroxyl radical 

footprinting are the two most widely used techniques (55-57). Both methods show a cleavage 

preference for outward-facing sugar phosphate backbones, though hydroxyl radicals exhibit much 

less sequence specificity and thus can probe the DNA backbone at a single nucleotide level (58,59).  

In this dissertation, we adopted hydroxyl radical footprinting technique to probe the 

rotational phasing of reconstituted nucleosomes. The hydroxyl radicals can be easily generated by 

the Fenton chemistry: [Fe(EDTA)]2- + H2O2 → [Fe(EDTA)]- +·OH + OH-, and are believed to 

mainly attack the hydrogen at the C5’-position (H-5’) of the sugar ring of DNA, and 2- to 5-fold 

less at other sugar sites in the order of C4’ > C3’ > C2’> C1’ (60). In the proposed H-5’ abstraction 

pathway, the principle cleavage products include a nucleotide 3’-phosphate and a nucleotide 5’-

aldehyde, as shown in Figure 1.12 (61,62). When nucleosomal DNA is exposed to hydroxyl radical, 

the outward-facing backbones are more accessible to attack compared with inward-facing ones, 

resulting in darker bands on a DNA sequencing gel. Since the rotational position of the nucleotides 

is repeated every 10-11 bp, the hydroxyl radical cleavage pattern of nucleosomal DNA is 

characterized by a pronounced 10-11 bp periodicity (Figure 1.13). 

1.3 Dissertation overview 

Previous studies in our group found that UV preferably induces the formation of CPDs in 

nucleosome at sites where the phosphodiester bond is positioned away from the histone surface 

and DNA bending is towards the major groove (Figure 1.14) (63,64). The broadly accepted 

explanation for this preference is that the outward-facing region has a higher decompression and 

rotational flexibility that allow the adjacent pyrimidines additional freedom to adopt a more 
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favorable photoreactive conformation for forming CPDs. The formation of CPDs causes a 7-9º 

structural distortion onto the DNA, the outward-facing positions can accommodate this distortion 

better than the inward-facing region, where the DNA conformation is more compressed and rigid. 

In these studies, however, only ten rotational positions on the dyad superhelix were examined, 

little is known about the CPD formation as a function of other SHLs and rotational positions. The 

goal of this dissertation is to systematically study the structural effect of nucleosome structure on 

CPD formation at every superhelical and rotational positions. In Chapter 2, we developed a system 

for studying CPD photoproduct formation and properties in any given sequence context at any 

superhelical location in a rotationally phased nucleosome. This enabled us to investigate: CPD 

frequency as a function of translational and rotational positions; nucleosome binding affinities; 

temperature effects on nucleosome stabilities. 

Using a protein-free DNA loop, Pehrson and coworkers observed a 10-11 bp periodicity in 

CPD formation similar to that in heterogeneous DNA, implying that bending, not protein-DNA 

interactions are the primary cause of the modulation of photoproduct formation (65). However, the 

exact shape, curvature, and rotational phasing of the DNA loop is unknown, therefore cannot be 

directly correlated with nucleosomal DNA. In Chapter 3, we developed a DNA minicircle system 

for determining the extent to which DNA bending might play a role in CPD formation in 

nucleosomes.  Using this system, we were able to conclude that dominant factor in determining 

CPD formation frequency in a nucleosome was DNA curvature, rather than DNA-histone 

interactions. 

Previously, Dr. Cannistraro in our group found that there were several factors that can 

affect C or mC deamination rates, including salt concentration, temperature and sequence context 

(Figure 1.15) (25). For example, the deamination rate of T=mC CPDs is appoximately 25-fold 
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faster when flanked directly by G’s than by A’s, T’s or C’s on the 3’-side, probably owing to 

catalysis by the O6 group of guanine. Dr. Song in our group investigated the deamination rates of 

CPDs at TmCG sites in the context of nucleosomes and found that deamination was greatly 

enhanced for outermost CPDs (63,64). Again, these studies are limited to the ten rotational 

positions on the dyad superhelix. What’s more, sequences of other contexts were not studied. In 

Chapter 4, we expanded the investigation to two other sequence contexts (CT=CT and TC=TC) 

by incorporating a poly (TC)n tracts into nucleosomes. By varying the length of TC-tracts, we were 

able to study more SHLs and rotational positions, and found that nucleosome structure modulates 

CPD deamination at all nucleosomal positions. 

Finally, Chapter 5 summarizes the conclusions of this study, and proposes future research. 
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1.5 Figures 

 

Figure 1.1: Structure of the skin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*This figure is from an online course: Open Learning Initiative Introduction to Anatomy and 

Physiology (http://www.savingstudentsmoney.org/OLI/AnPpost.html)
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Figure 1.2: UV/Vis spectrum. 

 

 

 

 

 

Figure 1.3: Formation of T=T CPD at a dipyrimidine site via [2+2] cycloaddition. 
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Figure 1.4: Four possible structures of syn-CPDs formed between adjacent thymine bases 

viewed according to their glycosyl conformation. The conformations around the N-glycosidic 

bond of the 5′- and 3′-components are shown in parentheses next to the CPD structures.  

 

 

 

 

 

 

 

 

 

 

*This figure is adapted from Ref. (21).
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Figure 1.5: Origin of C-to-T or CC-to-TT mutations from CPD deamination and/or 

translesion synthesis. 

 

 

 

 

 

Figure 1.6: Deamination of cytosine into uracil in a T=C CPD.
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Figure 1.7: Detection of T=C CPD deamination sites by photolyase and DNA-uracil 

glycosylase. The deaminated (and undeaminated) CPDs are reverted by photolyase (green) under 

black light. DNA-uracil glycosylase (UDG) (red) catalyzes the release of free uracil from uracil-

containing DNA, resulting in an abasic site (AP-site). Heating in basic buffer condition leads to 

the strand cleavage at AP-sites, which can then be determined by gel electrophoresis. 
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Figure 1.8: Mechanism of pyrimidine dimer cleavage by T4-pdg. 

 

 

 

 

 

 

 

 

 

*The figure is adapted from Ref. (38).
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Figure 1.9: Chromosomes are composed of DNA tightly-wound around histones. Eukaryotic 

DNA is packaged inside microscopic nuclei with the help of histones. Nucleosomes fold up to 

form a 30-nanometer chromatin fiber, which serves as a protofiber to produce coiled fibers of 

larger sizes to form higher-order structures. 

 

 

 

*This figure is taken from Ref. (39). 
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Figure 1.10: Structure of a nucleosome core particle and positions of superhelical locations. 

A nucleosome core particle is made of a 147bp DNA and a histone octamer core which contains 

two copies of each of H2A (yellow), H2B (red), H3 (blue) and H4 (green). The structure has a C2 

symmetry axis called dyad axis. Superhelical locations (SHL) are the different locations of 

superhelices relative the dyad axis. The superhelix on the dyad is assigned as SHL0. The SHLs 5’-

to the dyad axis are assigned negative numbers. 

 

 

Figure 1.11: Rotational positions within each superhelix on nucleosomes. On average, there 

are ten bases in a superhelix, each having a unique rotating angle relative to the histone surface. 

The base on the dyad is assigned as 0. The bases 5’-to the dyad axis are assigned negative numbers. 

 

*The top figure is taken from Ref. (66). 
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Figure 1.12: Proposed hydrogen abstraction at C5’-position pathway for DNA strand 

cleavage. The major reaction of the hydroxyl radical with the DNA backbone is to abstract a 

deoxyribose 5'-hydrogen atom, leading to the formation of a free radical intermediate, which reacts 

with oxygen and eventually undergoes backbone cleavage to form products. Only the radio-labeled 

product (oligonucleotide 3’-phosphate) is shown. The other cleavage product is oligonucleotide 

5’-aldehyde. 

 

 

 

 
Figure 1.13: Hydroxyl radical footprinting pattern of nucleosomal DNA. The outside facing 

positions are more accessible to attack compared with inside facing positions, resulting in a darker 

band on a DNA sequencing gel. A pronounced 10-11 bp periodicity is observed. 

 

 

 

 

 

 

*The top figure is taken from Ref. (62)
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Figure 1.14: The rotational position of a TmCG site in a full turn of nucleosome at the dyad axis greatly affects the rate of CPD 

formation. Left: Rotational positions of the mC of the TmCG sites in the nucleosome. Right: Bar graph of TmC CPD yield at each 

rotational position compared to that in free DNA (dashed line). 

 

 

 

 

 

 

 

 

*This figure is taken from Ref. (63) 
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Figure 1.15: Effects of sequence context and duplex formation on deamination rates. 

Sequences in italic and red on the back face of the cube refer to the single stranded form. Sequences 

in bold and blue on the front face of the cube refer to the double stranded form. Numbers in italics 

are the deamination half-lives in hours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*This figure is taken from Ref. (25) 
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Chapter 2 Effects of Rotational and 

Translational Position on T=T CPD 

Formation in a T11-Tract in a Nucleosome 1 

2.1 Introduction 

It is well established that DNA photoproducts produced by sunlight are responsible for the majority 

of the mutations associated with skin cancers (1-4). What is not so well established is the physical 

or mechanistic origin of the variation in mutation type and frequency within a gene, which must 

result from a complex interplay between the frequency of photoproduct formation, chemical 

transformation, repair, and translesion synthesis. To begin to dissect the various contributions of 

these factors, we have been examining the role of chromatin structure on DNA photoproduct 

formation.  

The original studies of CPD modulation by nucleosomes were carried out with 

nucleosomes containing mixed-sequence DNA obtained from the degradation of chromatin. Such 

sequences may be biased to bend around the nucleosome and obscure the relationship between 

sequence, rotational position and CPD formation. In a study of 254 nm induced CPD formation in 

nucleosome-bound 5S rRNA gene with a defined sequence, a less than 2-fold modulation of CPD 

formation could be detected only after carefully subtracting the CPD pattern produced in free DNA 

(5). In contrast, HISAT DNA containing various length T-tracts showed strong modulation of CPD 

formation, but with maxima that were shifted to the 5’-side of what was observed with mixed 

sequence nucleosomal DNA (6). A more recent study measuring rates of CPD formation and 

                                                 
1 All contents in this chapter have been published in Wang K and Taylor JS. Modulation of Cyclobutane Thymine 

Photodimer Formation in T11-Tracts in Rotationally Phased Nucleosome Core Particles and DNA Minicircles. Nucleic 

Acids Res (2017) 45 (12): 7031-7041. 
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photostationary state levels induced by 254 nm light concluded that there was no modulation of 

photoproduct formation in 5S and Widom 601 defined sequence DNAs (7). In contrast, UVB-

induced CPD formation of TCG CPDs at every rotational position in a full turn of DNA at the 

dyad axis of a rotationally phased artificial DNA sequence was modulated in a similar way to what 

was observed with mixed-sequence DNA.  

To investigate the modulation of CPD formation by nucleosomes, we have first chosen to 

develop methodology to study CPD formation at different translational positions in a nucleosome 

(Figure 2.1). A T11-tract was chosen as a model system for study because it contains all 10 possible 

CPD sites in a full turn of DNA. To hold the T11-tract in a single rotational orientation in a 

nucleosome, we have made use of TG bending motifs (T/A)3NN(G/C)3NN discovered by Crothers 

and coworkers to rotationally fix nucleosomal DNA when spaced every 10 bp (8). To position the 

T11-tract at different superhelical locations, we made use of a circular permutation synthesis 

strategy of the type initially developed by Crothers for localizing bends (9). We will show that 

CPD formation in the T11-tracts is strongly modulated by a nucleosome, with maxima that are 

shifted to the 5’-side of the T11-containing strand compared to heterogeneous DNA as previously 

observed for a mixed T-tracts (6). The precise position of the maxima, however, varied with the 

translational position, and did not always correlate with the maxima in hydroxyl radical cleavage 

sites used to assign rotational orientation of the DNA.  

2.2 Materials and Methods 

2.2.1  Materials 

ODNs were from IDT. T4-pdg (previously T4 endonuclease V) was prepared from a clone 

provided from Stephen Llyod as previously described (10). 



www.manaraa.com

33 

 

2.2.2  Nucleosomal DNA dimers 

The 168 bp parental nucleosomal DNA duplex was synthesized by hybridization of 95-mer and 

96-mer ODNs (IDT) to form a 23 bp duplex at their 3’-ends by slowly cooling from 95 °C to room 

temperature in 50 mM NaCl, and extended by 3’ to 5’-exo- Klenow Fragment (New England 

BioLabs) in 50 mM NaCl, 10 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 100 μM dNTPs and 1 mM 

DTT, for 30 min at 37 °C. The 168 bp duplex DNA was then digested by EcoRI (Promega) in 90 

mM Tris-HCl (pH 7.5), 50 mM NaCl and 10 mM MgCl2, for 30 min at 37 °C, and multimerized 

with T4 DNA ligase (Promega) in 30 mM Tris-HCl (pH 7.8), 10 mM MgCl2, 10 mM DTT and 1 

mM ATP, for 3 h at room temperature. The dimer product was separated by electrophoresis on a 

3% agarose gel run at 200 V and isolated using a Promega Wizard SV gel and PCR clean-up 

system. The dimeric DNA was then cloned into pBlueScript II SK- vector DNA (Agilent) that had 

been restricted with EcoRI and then dephosphorylated with calf intestinal phosphatase (CIP) (New 

England BioLabs) in 100 mM NaCl 50 mM Tris-HCl (pH 7.5), 10 mM MgCl2 and 1 mM DTT, 

for 30 min, at 37 °C, to prevent re-circularization. The cloning was performed using 1:1, 1:3 and 

3:1 molar ratios of vector:insert with T4 DNA ligase and 1 mM ATP at 10 °C overnight. The pBS 

vector with the dimer insert was then transfected into TOP10 chemically competent E.coli cells 

(Invitrogen) and plated on solid LB media (15 g/L agar, 25g/L LB broth, 100 μg/mL ampicillin). 

A clone containing the desired dimer plasmid was identified by restriction analysis and the 

sequence verified by DNA sequencing.   

2.2.3  Circular permutation synthesis of nucleosomal DNA 

The pBS dimer-containing clone was cultured in liquid LB media (25 g/L LB broth and 100 μg/ml 

ampicillin) and the plasmid was harvested with Promega PureYield plasmid miniprep system. 

Translationally permuted 150 bp nucleosomal DNAs were prepared from this plasmid by PCR 
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amplification with LongAmp Taq DNA polymerase (New England BioLabs) for 35 cycles 

followed by phenol extraction and ethanol precipitation. A typical 100 μL PCR reaction contained 

0.5 μM of forward and reverse primers, 300 μM of dNTPs, 300 ng template DNA, 4 μL DNA 

polymerase (2.5 U/ μL) in 1 reaction buffer 60 mM Tris-SO4 (pH 9.0), 20 mM (NH4)2SO4, 2 mM 

MgSO4, 3% glycerol, 0.06% IGEPAL CA-630, and 0.05% Tween 20.  

2.2.4  Nucleosome reconstitution 

Nucleosome core particles were isolated and purified from chicken erythrocytes following a 

simplified procedure provided by Dr. Michael Smerdon. DNA duplex 150-mers corresponding to 

seven different translational positions were incorporated into the nucleosomes by a salt mediated 

exchange process. Briefly, 150 bp duplex was incubated with nucleosomes at various ratios in 300 

μL of 2 M NaCl, 10 mM Tris-HCl, 5 mM EDTA at pH 7.5 and room temperature for 2 h, and then 

dialyzed against 50 mM NaCl and 10 mM Tris-HCl (pH 7.5) at 4 °C, overnight. The reconstituted 

nucleosomal core particles were recovered from the dialysis tubing and equilibrated at 54 °C for 2 

h to fix the nucleosomal phasing. The reconstituted particles were assayed by native PAGE (6% 

acrylamide, 0.2% bisacrylamide) in 100 mM Tris-borate, 2 mM EDTA (TBE), and the ratio of 

nucleosome-bound DNA to free DNA was quantified by Quantity One software. 

2.2.5  Relative binding affinity of circular permutated sequences 

The relative binding affinities for the nucleosomal DNAs for the histone core particle were 

determined by a competitive nucleosome reconstitution experiment with chicken DNA that was 

purified from isolated nucleosomes by phenol extraction and ethanol precipitation by a general 

procedure (8, 11). In a first step, a fixed amount of radiolabeled nucleosomal SHL 0 DNA was 

incubated with chicken blood nucleosome core particles (1:550) and increasing amounts of 
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competitor chicken nucleosomal DNA at 2 M NaCl, after which the salt concentration was lowered 

to 50 mM, and the reaction mixtures electrophoresed on a native polyacrylamide gel (6% 

acrylamide, 0.2% bisacrylamide in TBE).  In this way, it was determined that 385 parts of chicken 

DNA was needed to give approximately 50% binding of the radiolabeled nucleosomal SHL 0 DNA. 

Then radiolabeled SHL 0 to -6 DNAs were incubated in triplicate with the competitor DNA and 

nucleosome core particles at a 1:385:550 ratio, and the average ratios of bound to free DNA were 

calculated relative to that for the SHL 0 DNA.  

2.2.6  Hydroxyl radical footprinting 

Sodium ascorbate, Fe(NH4)2(SO4)2·6H2O and H2O2 (15 mM, 1.5 mM, and 0.18% final 

concentrations respectively) were quickly added to 100 μL of the nucleosome-bound DNA sample 

in 50 mM NaCl, 10 mM Tris-HCl, pH 7.5 reaction buffer with gentle vortexing after the addition 

of each reagent. The reaction was incubated for 120 s at room temperature and quenched by 

addition of glycerol and EDTA solution to final concentrations of 5% and 12 mM, respectively. 

The samples were electrophoresed on a native PAGE (6% acrylamide, 0.2% bisacrylamide in 

TBE), and gel sections containing the nucleosome bands were excised, crushed, and soaked in 1% 

SDS and 0.2 M NaCl. The proteins were then extracted with phenol:chloroform:isopropanol 

25:24:1, and the DNA was ethanol precipitated. To align the bands, a Maxam-Gilbert G 

sequencing reaction was carried out on the nucleosome-free DNA sample in 50 mM cacodylate, 

50 mM NaCl, 5 mM EDTA at pH 8.2. For a 100 μL reaction, 1μL of dimethyl sulfate was added 

to initiate the reaction. After 120 s of incubation at room temperature, 60 μL of mercaptoethanol 

was added to quench the reaction. The DNA was ethanol-precipitated and the resulting pellet was 

solubilized in 100 μL of 1 M piperidine, followed by 5 min heating at 90 °C and evaporating to 

dryness at 60 °C. 



www.manaraa.com

36 

 

2.2.7  T4-pdg assay for CPDs 

DNA substrates were irradiated with broadband UVB (280-400 NM, centered at 312 nm) 

(Spectroline model XX-15B) at 0 and 40 °C at a measured intensity of 1.5 mW/cm2 for 40 min for 

a dose of 36 kJ/m2. Nucleosome-bound DNA was first extracted with 

phenol:chloroform:isopropanol 25:24:1 twice, and ethanol-precipitated twice. The DNA samples 

were incubated with 8 μg of T4-pdg in 10 mM Tris-HCl, 50 mM NaCl, 5 mM EDTA, pH 7.5 for 

30 min at 37 °C to and then heated in 1M piperidine for 5 min to insure complete elimination of 

the sugar ring. Residual piperidine was evaporated by heating at 60 °C in vacuo. The resulting 

pellets were brought up in 20 μL formamide-dye and sequentially loaded on a 10% denaturing 

PAGE (7 M urea, 10% acrylamide, 0.33% bisacrylamide in TBE) so that the T-tracts would be 

aligned. 

2.2.8  Peak analysis 

The volume tool in Quantity One was used to quantitatively determine the relative amounts of HO• 

cleavage and TT CPD formation as a function of nucleotide position x, and the relative peak 

volumes I were fit to a Gaussian function, I = C + a*exp(-(x-b)2/(2*c2)) where C is a constant, a is 

the amplitude, b is the position of the maximum, and c is the standard deviation.   

2.2.9  Relative photoreactivity of T11-tracts at different SHLs 

To determine the relative efficiency of CPD formation in different SHLs, the 5’-radiolabeled 

duplex 41-mer sequence was separately mixed with 5’-radiolabeled duplex SHL -1 and -2 

nucleosomal DNA.  The mixtures were electrophoresed to determine the exact ratio of the 41-mer 

to the nucleosomal DNA by volume integration of the bands in a radioimage of the gel.  The 

mixtures were then exchanged with the chicken nucleosome core particles, irradiated, and then 
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subjected to the T4-pdg assay described above to determine the relative photoreactivity of the T-

tracts at the SHL -1 and -2 positions in the nucleosome core particle DNA relative to that of the 

unbound 41-mer DNA.  Two separate mixtures of 5’-radiolabeled duplex DNA, one consisting of 

SHL 0, -2, -4 and -6 DNA, and the other of SHL -1, -3 and -5 DNA were then prepared, a fraction 

of each which was assembled into a nucleosome core particle.  The free and nucleosome core 

particles were then irradiated and subjected to the T4 endonuclease assay from which the relative 

reactivities of the T-tracts at the different SHLs were calculated.   

2.3 Results and Discussion  

2.3.1  Design and synthesis of DNA substrates 

To facilitate the synthesis of nucleosomal DNA containing a T11-tract at each of the seven 

superhelical positions in the 5’-half of a nucleosome core particle, we adopted a circular 

permutation synthesis strategy of the type originally developed by Crothers and coworkers to study 

DNA bending (9). The idea was to synthesize a single nucleosomal DNA sequence containing a 

T11-tract and then to dimerize it, after which nucleosomal DNA containing the T11-tract in any 

desired superhelical location could be obtained by PCR using the appropriate primers (Figure 2.2). 

The parental nucleosomal DNA was designed to have the T11-tract centered at the dyad axis by 

incorporating TG bending motifs, (T/A)3NN(G/C)3NN, every 10 bp in the flanking DNA (8, 12). 

With this bending motif, bending is toward the major groove at the central GC base pair of the 

(G/C)3 sequence and toward the minor groove at the central TA base pair of the (T/A)3 sequence. 

In this way, the central T of the T11-tract in the parent 150-mer maps to 0, the dyad axis, and the 

T’s to the 5’-side are assigned negative numbers, and to the 3’-side, positive numbers. To make 

dimers of the nucleosomal DNA, EcoRI digestion sites were engineered into the ends of the 

sequence without interrupting the TG motifs, and were flanked by an extra 6 bp to ensure efficient 
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digestion. The resulting 168-mer sequence was also designed not to contain repetitive sequences 

as previously used (8, 12) to ensure that unique primers could be used to amplify any desired 

nucleosomal DNA sequence (Figure 2.3).   

The designed 168-mer DNA was prepared by primer extension of two overlapping 95-mer 

and 96-mer synthetic ODNs. The dimer of the 150-mer nucleosomal DNA was prepared by 

digesting the 168-mer with EcoRI and ligating the digestion products with T4 DNA ligase. The 

dimer was purified from an agarose gel (Figure 2.4) and was cloned into the EcoRI site of a 

pBlueScript SK- vector.  Individual clones were screened by enzyme digestion and PCR to identify 

those that had the tandem repeat in phase, and then verified by sequencing (Figure 2.5). For the 

circular permutation synthesis, seven sets of forward and reverse primers were used to produce a 

series of 150 bp nucleosomal DNAs that position the T11-tract at 7 different superhelical locations 

(SHL) along a nucleosome core particle, at 0 (dyad), -1, -2, -3, -4, -5, and -6 (Table 2.1). 

2.3.2  Nucleosome core particle reconstitution and assay by hydroxyl radical 

footprinting 

To determine the optimal conditions for nucleosome core particle (NCP) reconstitution, the 150bp 

DNA duplexes were 5’-end labeled and titrated with NCPs isolated from chicken erythrocytes 

under high salt conditions that promote nucleosomal DNA exchange, followed by lowering of the 

salt concentration and thermal annealing (13). Electrophoresis on a native gel showed that about 

95% of the 150-mer DNAs could be incorporated into a single NCP band at an NCP:DNA ratio of 

600:1 (Figure 2.6). To determine the rotational and translational setting of the DNA on the 

nucleosome, the reconstituted NCPs were subjected to hydroxyl radical (HO•) footprinting. The 

HO• cleavage pattern exhibited a very pronounced 10-11 bp periodicity, indicating that the 150-
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mer DNAs were rotationally phased. The cleavage pattern was mapped onto the DNA sequence 

by alignment with the Maxam-Gilbert G reaction bands (Figure 2.7). 

The HO• footprinting pattern was used to verify the translational position of the T11-tract 

based on the expectation that the periodic modulation of the HO• cleavage pattern would only be 

apparent where the DNA was in direct contact with the histone core. HO• preferentially cleaves 

DNA at sites where the sugar phosphate backbone is most exposed and faces away from the histone 

surface, and is inhibited where it faces the histone surface. For the dyad position, one can clearly 

see the expected six repeats of HO• cleavage bands above (to the 3’-side of) the band at the T11-

tract, with the last band appearing at the edge of the large uncleaved band corresponding to full 

length DNA. The number of repeats increased by one as the T11-tract was moved an additional 10 

bp towards the 5’-end. When the T11-tract was positioned at SHL -6, 12 repeats are observed. 

These results, coupled with the observation of a single nucleosomal band in the electrophoresis 

gel following nucleosomal DNA exchange (Figure 2.6) indicate that the 150-mer DNA’s are all 

largely adopting a single, centered translational position that maximizes histone-DNA contacts. 

Had the DNA shifted by 10 bp to either side, contact between one turn of the helix and the 

nucleosome would have been lost, and this would lead to thermodynamic instability. 

There were differences, however, in the alignment of the HO• cleavage bands with the T-

tract sequence at different SHLs (Figure 2.8 and Figure 2.9A). The HO• cleavage band pattern for 

each SHL could be fit to a Gaussian function with the average position of the band maximum at 

+1 ± 1 relative to the base pair assigned as 0 in the T11-tract. The spread of cleavage bands had an 

average standard deviation  of 2.0 ± 0.3, corresponding to a band width at half peak height of 

2.355  or 4.8 ± 0.7 nucleotide. Previous HO• footprinting of a repetitive TG motif-containing 
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nucleosome (8) and one containing the Widom 601 sequence (14) also showed a variation of 2 or 

more in the position of maximum cleavage from that expected for a 10-11 base pair repeat. The 

variability in the position of the HO• cleavage band maxima could be due to differences in the 

precise translational position and hence rotational position of the nucleosomal DNA at difference 

SHLs caused by the T11-tract. The variability could also be due to differences in DNA 

conformation or interactions with histone tails at different SHLs. Removing the histone tails, 

however, was not previously found to alter the HO• footprinting pattern, but the point to which the 

tails were truncated was not indicated (15). 

2.3.3  T=T CPD distribution with in T11-tracts as a function of SHL 

Free or nucleosome-bound 150-mer DNA duplexes were irradiated with broadband UVB light 

centered at 312 nm light at 0 °C to produce the cis-syn T=T CPDs within the T11-tracts. The 

irradiation time was chosen to maximize signal to noise of gel bands while still maintaining the 

pattern observed at lower doses (Figure 2.10 and Figure 2.11). The nucleosome-bound samples 

were then phenol extracted to remove histone core proteins, ethanol precipitated, and incubated 

with T4 pyrimidine dimer glycosylase or T4-pdg to reveal the locations of the CPDs. T4-pdg is a 

glycosylase that hydrolyzes the N-glycosidic linkage of the 5’-T of the CPD, and then causes strand 

cleavage by an associated lyase activity to first yield a 5’-phosphate terminated end by a -

elimination reaction, followed by formation of a 3’-phosphate terminated end by a slower -

elimination reaction (16).  These are the same ends that are produced by the Maxam-Gilbert 

reactions, and the 3’-phosphate is the major end produced by HO•-mediated hydrogen abstraction 

at C5 and C4 of the sugar ring (17). To ensure complete δ-elimination of the sugar, the samples 

were further incubated with 1 M piperidine at 90 °C for 5 minutes. The samples were sequentially 

loaded in time so that the cleavage bands at the T11-tracts ran at approximately the same position 
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on the gel (Figure 2.7). Because hot piperidine is also known to cause cleavage at (6-4) and Dewar 

photoproducts (18), we treated an irradiated T11-tract containing 41-mer under the same conditions 

without T4-pdg, and found no additional bands (Figure 2.10), confirming that the observed 

patterns in free DNA were due solely to CPDs. This is consistent with the fact that TT (6-4) and 

Dewar photoproducts form with 7% and 0.3%, respectively, of the frequency of CPDs with UVB 

light (19). These photoproducts are expected to form even less in nucleosomes, which are known 

to suppress (6-4) products about 6-fold compared to internucleosomal or linker DNA (20).  

The CPD cleavage band patterns in free and nucleosome-bound DNA were completely 

different and showed essentially the opposite intensity pattern (Figure 2.8). In free DNA, all seven 

T11-tract positions show the same T=T CPD band pattern, with the highest CPD frequency at the 

3’-end, decreasing to a minimum in the center, and increasing slightly at the 5’ end, as previously 

observed by others in T-tracts of various lengths (21, 22). In nucleosome-bound DNA, the band 

pattern was reversed, with the CPD frequency highest in the middle of the T-tract and tapering off 

towards the 5’- and 3’-ends. The pattern of CPD cleavage bands of the T11-tracts at all seven SHLs 

could be fit to a Gaussian function with an average maximum band position at -0.9 ± 0.7 relative 

to the base pair translationally related to the dyad, and with a  of 1.4 ± 0.3 (Figure 2.9A & B).   

While almost all of the CPD cleavage bands fit a Gaussian, outlier CPD cleavage bands were 

observed at -4 in the T11-tract of the dyad NCP and at +4 in the -6 NCP, which map to positions in 

a nucleosome crystal structure (1AOI.pdb) that are in close contact with paired loops in histone 

folds.  

The position of the CPD band pattern maximum within the T11-tracts in the nucleosome 

core particle also varied with translational position much like that of the HO• cleavage band 



www.manaraa.com

42 

 

patterns. A variation in the position of maximum CPD formation with translational position has 

also been observed for irradiated chromatin, but with a different average position (23). The average 

maximum position of CPD formation in the T11-tracts was 1.8 ± 0.7 nucleotides to the 5’-side of 

the site of the average maximum position of HO• cleavage. For most translational positions, CPD 

formation tracked with HO• cleavage (Figure 2.9A), with the exception of the dyad and SHL -2 

positions which showed differences of 2.4 and 3 nucleotides between sites of maximum CPD 

formation and HO• cleavage. Interestingly, the standard deviations for the Gaussian fits of the 

CPD band patterns tracked very closely with those for HO• cleavage and did not show any large 

deviation at the dyad and the SHL -2 positions (Figure 2.9B).  

The progressive change of the position of maximal cleavage towards the 5’-end in the 

nucleosomal DNA’s with an increase in the translational position away from the dyad can be 

explained in part by the fact that the helical repeat is not exactly 10 bp/turn in the nucleosome.  

Inspection of the crystal structure of a 147-mer DNA nucleosome (1KX5.pdb) shows that the base 

pair orientation equivalent to that at the dyad occurs at -10, -31, -52 and -73, which could explain 

the overall shift of the position of maximum CPD formation from 0.1 at the dyad to -2 for the SHL 

-6 T-tract (24). The variation in the position of maximum CPD formation or HO• cleavage is not 

linear with translational position, however, suggesting that the T-tract itself may lead to 

adjustments in the actual rotational and translational positioning of the T-tracts on the histone core 

particle as a function of position. 

The 5’-shift in the position of the maximum CPD formation relative to the HO• cleavage 

is in accord with what was previously observed in a naturally occurring DNA sequence containing 

T-tracts of various lengths (6). This is different from what was observed for heterogeneous and 

non-T-tract sequences, where the maximum of CPD formation and HO• cleavage closely 
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coincided (25, 26). The frequency of CPD formation in the heterogeneous sequences was found to 

correlate with the amplitude of nucleotide motion as inferred from temperature factors of the 

nucleotides in the crystal structures of nucleosomes. The temperature factors in turn correlate with 

the degree to which the backbone faces away from the protein surface, and hence the sites most 

accessible to HO• (25). The average 1.8 bp shift in position of the maximum CPD cleavage in T-

tracts relative to HO• cleavage would thus appear to be due to a difference in the DNA 

conformation, flexibility, or histone interactions between T-tracts and heterogeneous DNA.    

In the crystal structure of a nucleosome containing a T16-tract (2FJ7.pdb) (27) the 

temperature factors for the individual T’s in the T16-tract parallel those seen in non-T-tract DNA 

in a nucleosome (Figure 2.12A), suggesting that something other than nucleotide dynamics is 

controlling CPD formation frequency. We noted that the minor groove of the T16-tract was 

significantly narrowed in the crystal structure, suggesting that this conformation might be an 

important determinant. Previous molecular dynamics studies of CPD formation suggested that 

CPD formation is most favorable when the distance between the centroids of the C5-C6 bonds of 

adjacent thymidines and the improper torsion angle (TnC5-C6-Tn+1C6-C5) fall within the range of 

0 to 3.6 Å and 0 to 48° (28). Analysis of these parameters within the T16-tract show that among all 

the TT sites, only the T251-T252 site comes close to these values, with a values of 3.7 Å and 38° 

(Figure 2.12B). This site corresponds to the -1 and 0 positions relative to the translated dyad axis, 

and occurs two nucleotides to the 5’-of the position of the maximum nucleotide temperature factor 

at positions +1 & +2. The next closest site is 252 and 253 which had values of 4.1 Å and 24°.    

Thus it is possible that the T-tract adopts a slightly different structure from heterogeneous DNA 

that shifts CPD formation frequency to the 5’-side. 
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2.3.4  Binding affinity as a function of T-tract translational position 

If the observed differences in CPD formation and HO• cleavage patterns at the T-tracts at different 

SHLs are due to different alignments of the T11-tract, then one might expect that they could have 

an effect on the binding affinity of the DNA. To test this possibility, we determined the binding 

affinity of the various DNAs relative to the DNA at SHL 0 by previously described competition 

experiments (8, 11). Briefly, the concentration of chicken nucleosomal DNA required to reduce 

the binding of radiolabeled SHL 0 DNA to 50% was first determined by titration. The other 

radiolabeled DNAs were incubated with this same amount of chicken nucleosomal DNA and the 

fraction bound was determined. The results are graphed in Figure 2.9C, and show that the relative 

binding affinity dropped slightly from 1 for SHL 0 to 0.7 for SHL -1 & -2, and then increased from 

0.8 for SHL -3 to 1 for SHL -4 and then to 1.5 for SHL -5 & -6. The relative binding affinities are 

what one might expect for the presence of a destabilizing sequence which would cause least 

disruption of binding when it is placed at the end of the nucleosomal DNA. The observed binding 

trend, however, does not appear to correlate with the observed CPD and HO• cleavage patterns. 

2.3.5  CPD yield as a function of T-tract translational position 

While the study of individual T11-tract DNAs revealed differences in the pattern of CPD formation 

as a function of SHL, it did not reveal whether or not the overall formation of CPDs at a particular 

SHL was enhanced or inhibited. To determine this, we first irradiated radiolabeled SHL 0 & -1 

DNAs with radiolabeled 41-mer DNA before and after assembly with nucleosomal core particles, 

where it was expected that the 41-mer DNA would remain free in solution under both conditions.  

Then a mixture of SHL 0, -2, -4 and -6 DNA was irradiated before and after assembly into a 

nucleosome, and the same was done for a mixture of SHL -1, -3 and -5 DNA. After quantifying 

and normalizing the band volumes, the CPD yields could be calculated as a function of 
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translational position relative to free DNA (Figure 2.9C). As can be seen the CPD yield at SHL 0 

was greater than for free DNA and then dramatically rose 4.5-fold for SHL -5, after which it 

dropped back down to 1.5-fold for SHL -6. The results are generally in accord with what has been 

observed for CPD formation in mixed-sequence nucleosome core particles in which CPD yield 

increased on going from the dyad to the 5’-end (23) though this may also reflect some sort of 

sequence bias. There does not, however, appear to be any correlation between CPD yield and the 

position of maximum for CPD formation in the T11-tracts as a function of translational position.    

2.3.6  Temperature study of T=T CPD formation in nucleosome at the dyad and 

SHL -6 

Because it is known that the frequency of CPD formation within a T-tract in free DNA is 

temperature dependent (21), we examined the effect of temperature on CPD formation in both free 

and nucleosome-bound DNA. First, a 41 bp free DNA duplex containing a T11-tract in the center 

was irradiated with UVB light at 0, 10, 20, 30, and 40 °C. The CPD band pattern shifted from one 

with a major peak at the 3’-end to a more even distribution of peaks as the temperature increased 

(Figure 2.13) in accord with a previous study on T-tracts of various different lengths (21).  This 

change was attributed to a shift from the T-tract structure to a normal B DNA structure at higher 

temperatures.  

Because the greatest difference in CPD band patterns for the nucleosome free 41-mer was 

observed at 0 and 40 °C, the free and nucleosome-bound DNA were irradiated with UVB light at 

these two temperatures. Only the DNAs with the T11-tract at the dyad and -6 SHL positions were 

subjected to this temperature study because they represent two extreme positions of 

conformational flexibility in a nucleosome (29). As expected, the CPD band pattern in the two 

nucleosome-free DNAs changed in the same way as in the 41-mer duplex when heated from 0 to 
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40 °C, in which the major bands were at the 3’-end of the T-tract at 0 °C and more evenly 

distributed at 40 °C, though favoring the 5’-side (Figure 2.14). The bias for the 5’-side may be due 

to the fact that CPD formation was more efficient at 40 °C than at 0 °C, as evidenced by the 

decrease in the % uncleaved substrate, which would favor shorter fragments resulting from a 

greater number of multiple hits per strand. In contrast, CPD formation at both the dyad and SHL -

6 positions in the nucleosome showed similar Gaussian band patterns at 0 °C that did not change 

significantly upon heating to 40 °C, except perhaps for a small shift in the position of the maximum 

peak to the 5’-side, possibly due to the increased cleavage efficiency. For the dyad NCP, the 

Gaussian band pattern was centered at +0.2 at 0 °C and shifted slightly 5’ to -0.3 upon heating to 

40 °C, whereas  also increased slightly from 1.3 to 2.1. Likewise, the center of the Gaussian band 

pattern for SHL -6 NCP moved slightly 5’ from -1.5 to -1.9 with a similar small increase in  from 

1.3 to 1.8. The small changes in the pattern of CPD formation in the NCP with an increase in 

temperature suggest that the flexibility of the DNA does not increase significantly with 

temperature. The small changes also suggest that the 5’-end of the nucleosomal DNA is not much 

more flexible than that at the dyad, and remains largely bound to the histone core even at 40 °C.   

2.4 Conclusion 

We have shown by way of CPD formation that the nucleosome is capable of modifying the 

conformation of T11-tracts at all SHLs, including -6. Considering that the -6 SHL is only one turn 

away from where the DNA exits the nucleosome, and is therefore the least constrained, the T11-

tract must be quite bendable. The ability of the T11-tract to smoothly bend across all SHLs along a 

nucleosome core particle is in accord with previous studies that found that T-tracts enhanced the 

bendability of DNA (30), and further begs an answer to the question of why T-tracts are excluded 

from nucleosomes in yeast (31, 32). In Chapter 4, we expand the study to poly (TC)n tracts and we 
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will show that nucleosomes strongly modulate CPD deamination, with rate maxima shifted 3 

nucleotides (nt) to the 3’ side of the dyad axis. 
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2.7 Tables and Figures 

 

Figure 2.1: Strategy for studying CPD formation as a function of rotational and translational 

positions in a nucleosome. A 150-mer, 5’-32P-endlabeled duplex DNA containing a T11-tract at 

various translational positions is incorporated into a nucleosome by a salt-mediated exchange 

mechanism and then irradiated with UVB light. The DNA is then treated with T4-pdg which 

cleaves the DNA at sites of CPDs, and electrophoresed on a denaturing polyacrylamide gel to 

visualize the sites of cleavage. 
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Figure 2.2: Circular permutation PCR strategy used for preparing nucleosomal DNA with T11-tracts at specific SHLs. A DNA 

168-mer with a centrally located T11-tract was prepared by primer extension of two overlapping 95 and 96-mers. The resulting product 

was cleaved with EcoRI and multimerized with T4 DNA ligase and ATP, and the dimer excised from a gel and cloned.  Nucleosomal 

DNAs with T11-tracts at specific SHLs were prepared from the clone by PCR using specific pairs of forward and reverse primers (Table 

2.1) whose positions are shown as solid and dashed arrows respectively on the sequence in Figure 2.3. The SHLs correspond to the 

number of helical turns from the dyad axis on the blue strand containing the T11-tract. They are negative to correspond with the 

numbering system in which the nucleotides on the T11-tract decrease from 0 at the dyad axis as they approach the 5’-end. The -3 (inside) 

and +3 nucleotide (outside) positions are shown in blue. The positions at which the major and minor grooves face the histone surface 

are indicated by M and m, respectively, and are colored coded to match the major groove and minor groove bending motifs in Figure 

2.3.
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Table 2.1: Primer sets used in circular permutation synthesis.(f = forward primer, r = reverse 

primer). 
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Figure 2.3: Sequence design of 168-mer nucleosomal DNA. A 168-mer DNA duplex was 

designed to have a centrally located T11-tract (underlined), terminal EcoRI restriction sites (green 

italic), phased minor groove bending (T/A)3 sequences in red, and major groove bending (G/C)3 

sequences in blue. The T in orange in the T11-tract corresponds to the position at which the major 

groove is expected to bend towards the histone surface at the dyad axis. 

 

 

Figure 2.4: Ligation products of digested primary 168bp nucleosomal DNA. L: 100 bp ladder, 

M: monomer used in ligation, D: monomer and dimer fraction from ligation product mixture, O: 

oligomers from ligation reaction 
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Figure 2.5: Sequencing analysis of clone 8. 
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Figure 2.6: Native PAGE analysis of the salt mediated exchange of nucleosomal DNA into 

nucleosomes. Incorporations of >95% could be achieved at a ratio of 1:600 (DNA: NCP) by this 

method. 
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Figure 2.7: PAGE analysis of the hydroxyl radical footprinting of the nucleosome core particles and assay of CPD formation in 

free and nucleosome-bound DNA. The first lane of each set of four lanes is the Maxam Gilbert G ladder, the second lane is the HO• 

footprint of the DNA in the nucleosome core particle, the third lane is CPD specific T4-pdg treated UVB irradiated free DNA, and the 

fourth lane is the CPD specific T4-pdg treated irradiated nucleosome-bound DNA. From left to right, SHLs 0, -1, -2, -3, -4, -5 and -6. 
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Figure 2.8: Footprinting and CPD patterns in nucleosome-bound DNA compared to the CPD 

pattern in free DNA. Traces of the T11-tract section of the lanes in Figure 2.6 of A) CPD formation 

in free DNA, B) CPD formation in nucleosome-bound DNA, and C) HO• cleavage in nucleosome-

bound DNA. The numbers to the left are the SHLs of the T11-tract, while the numbers above 

correspond to the position of the cleaved T in the T11-tract in which the 0 position is expected to 

align with the dyad in the SHL 0 construct. M and m refer to where the major and minor grooves 

face the nucleosome surface.
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Figure 2.9: Quantification of the CPD and footprinting band patterns, relative CPD yields, 

and nucleosomal DNA binding affinities. A) Comparison of the position of maximum CPD 

formation and HO• cleavage in the T11-tracts of the nucleosome-bound DNA as a function of SHL 

calculated from Gaussian analysis of the pattern of bands in Figure 2.8. B) Comparison of the 

standard deviation of the Gaussian function used to fit the CPD and HO• cleavage patterns. C) 

Yield of CPDs in the nucleosome core particle relative to free DNA for the T11-tracts as a function 

of SHL, together with the binding affinity of the DNA for the nucleosome relative to SHL 0.
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Figure 2.10: Test for (6-4) photoproduct formation and CPD formation as a function of UV 

dose in the 41-mer duplex. Lane G: Maxam Gilbert A+G ladder; Lane C: UVB-irradiation for 40 

min at 0 °C, then treated with 1M piperidine at 90 °C for 5 min. Lanes 0-125: UVB irradiation for 

0, 1, 6, 10, 25, 45, 65, 95, and 125 min of irradiation at 0 °C, then treated with T4-pdg followed 

by treatment with 1 M piperidine at 90 °C for 5 min. The percent uncleaved is calculated following 

subtraction of the 0 min lane.
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Figure 2.11: Traces of lanes in Figure 2.10.Traces of lanes for the irradiation times shown on 

the left.
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Figure 2.12: Temperature factors and geometry of nucleotides within T16-tract of 

nucleosome crystal structure 2FJ7.pdb.A) Temperature factors as a function of translational 

position. B) Geometric parameters relevant to CPD formation for the T16-tract. Shaded in blue is 

the region thought to be required for CPD formation.
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Figure 2.13: CPD photoproduct distribution in the 41mer duplex DNA irradiated with UVB 

over a temperature range from 0 to 40 ℃.
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Figure 2.14: PAGE assay of the effect of temperature on the frequency of CPD formation in 

T11-tracts in free DNA (DNA) and in nucleosome-bound DNA (NCP) at two different SHLs. 

A) Radioimage of the PAGE gel of the T4-pdg cleavage products at SHL 0 and -6, at 0 oC and 40 
oC, and B) scans of the lanes at the sites of the T11-tracts. 
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Chapter 3 Effects of DNA Bending on T=T 

CPD Formation in a Rotationally Phased T11-

tract in a DNA Microcircle1 

3.1 Introduction 

It was demonstrated many decades ago that nucleosomes can modulate cyclobutane pyrimidine 

dimer (CPD) formation in heterogeneous genomic DNA with a 10-11 bp periodicity that was 

attributed to the effect of bending on the conformation and dynamics of DNA (1, 2). A similar 

effect was observed to occur in a protein-free DNA loop which supported the idea that bending, 

and not protein DNA interactions were the primary cause of the modulation of photoproduct 

formation (3). We also discovered that the deamination of C and 5-methylcytosine (mC) in the 

CPDs was modulated with the same rotational phasing as their formation (4). Because deamination 

of C and mC in CPDs has been correlated with the signature C to T mutations induced by UV light 

(5, 6), it would be of interest to know whether the deamination is also being modulated by bending 

or by some other effect.   

To study CPD formation in protein-free DNA with the same curvature as in the 

nucleosome, we prepared a rotationally phased 80-mer microcircle DNA. The sequence of 

microcircle DNA was directly adapted from the nucleosomal DNA sequence (Figure 2.3), 

containing the same TG bending motif and a T11-tract in the middle. CPD formation in the 

microcircle DNA was also found to be modulated in the same way as in the nucleosome 

(modulation by nucleosome structure can be found in Chapter 2), indicating that the TG motifs 

                                                 
1 All contents in this chapter have been published in Wang K and Taylor JS. Modulation of Cyclobutane Thymine 

Photodimer Formation in T11-Tracts in Rotationally Phased Nucleosome Core Particles and DNA Minicircles. Nucleic 

Acids Res (2017) 45 (12): 7031-7041. 
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were rotationally phasing the microcircles, and that bending was the major factor in controlling 

CPD formation frequency. 

3.2 Materials and Methods 

3.2.1  Materials 

ODNs were from IDT. T4-pdg (previously T4 endonuclease V) was prepared from a clone 

provided from Stephen Llyod as previously described (7). 

3.2.2  Circular 80-mer DNA substrates: microcircle DNA mimic of nucleosomal 

DNA 

The single strand circular 80-mer DNA containing an A11-tract was prepared by ligation of the 

linear DNA with T4 DNA ligase and 1 mM ATP in the presence of a scaffold DNA at 10 °C 

overnight and purified by denaturing PAGE on a 10% acrylamide 0.33% bisacrylamide gel in 7 M 

urea in 1 TBE. Purified ligation products were then treated with 5 μL of exonuclease I (New 

England BioLabs) in 67 mM glycine-KOH, 6.7 mM MgCl2, 10 mM 2-mercaptoethanol, pH 9.5 

for 1 h at 37 °C to eliminate any unligated, and ligated, single-stranded, linear DNAs. The circular 

DNA was then annealed with complementary single strand T11-tract containing ODNs of different 

lengths in 50 mM NaCl by slowly cooling from 90 °C to room temperature. Annealed products 

were purified by native PAGE on 6% acrylamide, 0.2 % bisacrylamide gel in TBE before further 

treatment.    

3.2.3  T4-pdg assay for CPDs  

DNA substrates were irradiated with broadband UVB (280-400 NM, centered at 312 nm) 

(Spectroline model XX-15B) at 0 and 40 °C at a measured intensity of 1.5 mW/cm2 for 40 min for 

a dose of 36 kJ/m2. Nucleosome-bound DNA was first extracted with 
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phenol:chloroform:isopropanol 25:24:1 twice, and ethanol-precipitated twice. The DNA samples 

were incubated with 2 μg of T4-pdg in 10 mM Tris-HCl, 50 mM NaCl, 5 mM EDTA, pH 7.5 for 

30 min at 37 °C to and then heated in 1M piperidine for 5 min to insure complete elimination of 

the sugar ring. Residual piperidine was evaporated by heating at 60 °C in vacuo. The resulting 

pellets were brought up in 20 μL formamide-dye and sequentially loaded on a 10% denaturing 

PAGE (7 M urea, 10% acrylamide, 0.33% bisacrylamide in TBE) so that the T-tracts would be 

aligned. 

3.3 Results and Discussion 

While it is clear from this study of T11-tracts (Chapter 2) and the previous one of various sized T-

tracts in a section of promoter DNA (8) that the nucleosome can dramatically alter CPD formation 

in T-tracts, it is not clear to what extent that this is due to the histone proteins or to DNA bending. 

In a previous study, lambda repressor was used to constrain the formation of a protein-free DNA 

loop and show that DNA bending alone can modulate CPD formation (3). In that study, the site of 

maximum of CPD formation coincided with the site of maximum DNase I cleavage, which has 

been shown to occur 1-2 bases to the 3’-side of the dyad in a nucleosome phased by TG motifs (9). 

The exact shape, curvature, and rotational phasing of the DNA in the lambda repressor system is 

unknown, however, and therefore cannot be directly correlated with nucleosome core particles. 

We therefore, decided to investigate CPD formation in the T11-tract of an 80 bp circular DNA 

section of the same rotationally phased sequence we used in the nucleosomal DNA studies to 

mimic one turn of the nucleosomal DNA. In the nucleosome crystal structure 1KX5.pdb, one 

complete turn of DNA around the nucleosome corresponds to about 79 bp (10). We included one 

more bp in our sequence so as not to interrupt the 10 bp repeat of the TG motifs used to rotationally 

phase the DNA (Figure 3.1). 
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The 80-mer single strand circular DNA complementary to the T11-tract was prepared by 

ODN templated-directed ligation of a synthetic single strand 80-mer. The circular DNA was 

isolated and hybridized (Figure 3.2) to complementary strands 28, 41, 50, 60, 70, and 80 

nucleotides in length with the T11-tract near the center of each sequence (Figure 3.1). We expected 

that the single-stranded section of DNA would generate a bending force on the double strand DNA 

(dsDNA) section, when the length of the dsDNA segment exceeded the length of the remaining 

single strand, much like in a molecular vise (11). We therefore, expected that the DNA duplex in 

hybrids formed with the longer DNA would become increasingly bent with length, and that this 

would be reflected in the CPD distribution in the T11-tract. To determine this, the hybrid DNA 

microcircles were then UVB irradiated at 0 and 40 °C, and then assayed for CPDs by T4-pdg 

(Figure 3.3 and Figure 3.4).  

At 0 °C, the pattern of CPD formation for the 80-mer microcircle hybridized to the 28 bp 

DNA was similar to that for the 41 bp or 150 bp free DNA in that the maximum CPD yield was at 

the 3’-end, except that the distribution of peaks was broader. As the length of the duplex section 

increased to 41 and 50, the CPD pattern began to shift slightly towards the 5’-end with maxima at 

+2.0 and +1.4, respectively, relative to the 0 position corresponding to where the dyad axis would 

be in the nucleosome. When the segment reached 60, 70, and 80 bp, the CPD maxima shifted to 

the middle of the T tract, with maxima at positions -0.8, 0, and -0.5, respectively, which are close 

to the average of -0.9 observed for the nucleosome-bound DNAs (Figure 3.5). In addition, the 

standard deviation of the Gaussian fits became narrower, decreasing linearly from 2.5 for the 28-

mer to 1.5 for the 80-mer, which was also close to the average of 1.4 seen for the nucleosome 

(Figure 3.5B). The close correlation between what was observed in the nucleosome and in the 

microcircle suggests that the microcircle is adopting an average structure with the same curvature 
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and rotational phase as in the nucleosome, and that these two parameters are sufficient to explain 

the modulation of CPD formation by the nucleosome. 

At the higher temperature of 40 °C, the in phase 28-mer hybrid microcircle gave a fairly 

even pattern of CPDs, with a bias for the 5-side (Figure 3.3 and Figure 3.4), as was observed for 

the T11-tracts of the nucleosome-free SHL 0 and -6 DNA duplexes at the same temperature (Figure 

2.14B). The CPD pattern for the 41-mer hybrid microcircle could be fit to a Gaussian with a 

maximum at -3.3, whereas the maxima for the 60-, 70-, and 80-mer hybrid microcircles moved 

increasingly towards the center with maxima at -2.4, -1.5 and -1.4 (Figure 3.5A). The position of 

maximum CPD formation at 40 °C came within approximately one base to the 5’-side of that 

observed at 0 °C in the 80-mer hybrid. Again this may be attributed to the higher cleavage 

efficiency at 40 °C which resulted in a greater percentage of multiple cleavages that favors shorter 

end-labeled fragments. The 50-mer hybrid microcircle did not follow the general trend and for 

reasons not understood at this time had a maximum at -0.6 at 40 °C, which was much more towards 

the 3’-end than for any of the other microcircles. The standard deviation of the Gaussian fits is 

greater at 40 °C than at 0 °C, and in contrast to 0 °C, generally increased rather than decreased on 

going from the 41-mer to the 80-mer hybrid microcircles (Figure 3.5B), possibly owing to the 

more extensive cleavage. 

The behavior of our fully duplex 80-mer microcircle is consistent with previous studies 

showing that covalently closed circular DNAs as small as 70 base pairs with the lowest 

superhelical density can adopt circular forms without kinking as judged from cryo-EM and 

enzymatic probe studies. By using sensitivity to BAL31 and S1 digestion, DNAs of 84-86 bp in 

length were found to form kink-free covalently closed circular DNAs (12). Because the fully 

complementary 80-mer DNA that we used contained a nick, it is possible that it could have kinked 
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at this site. Kinking at one end of a circular DNA, however, would increase the curvature of the 

opposite end and would be expected to lead to a second kink opposite the first kink (13). We see 

no evidence of such a kink that would have caused significant disruption to the CPD pattern in the 

T11-tract which is almost directly opposite the nick in the 80-mer circular DNA duplex.  Likewise, 

a cryo-EM study of 94 bp DNA circle containing nicks at opposite ends showed no significant 

evidence of such double kinking (14). T-tracts themselves have been found to be highly flexible 

by single molecule experiments that probe looping (15) and DNA cyclization (16).  

To verify that the pattern of CPD formation was related to the rotational phasing, and not 

some other effect, we constructed am 80-mer nicked duplex in which the T11-tract was out of phase 

by one half a turn (Figure 3.6). When this microcircle was irradiated at 0 °C, the CPD pattern 

completely changed. As expected, CPD formation was minimal at the center of the T-tract and 

maximal at the ends. When irradiated at 40 °C, the CPD was more evenly distributed, but still 

favored the ends. 

3.4 Conclusion  

We have shown that the pattern of CPD formation in nucleosomes can be reproduced with a nicked 

circular 80-mer DNA, corresponding to a full turn of DNA around the nucleosome that contains 

phased TG-motifs. The great similarity between the pattern of CPD formation in the nucleosome 

and in the microcircle suggests that the DNA in the microcircle is adopting the same rotational 

phase and curvature as in the nucleosome, and is not freely rotating about the helical axis or kinking. 

Such a rotationally phased unkinked 80-mer mini-circular duplex should therefore, be a good 

model for assessing the effect of DNA bending on hydrolytic deamination of cytosine containing 

CPDs, as well as other reactions of nucleosomes. The ability of the T11-tract to smoothly bend 
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within the 80-mer microcircle is in accord with previous studies that found that T-tracts enhanced 

the bendability of DNA (16). The bend-dependent pattern of CPD formation within the T11-tract 

might also be useful for reporting on the magnitude and phasing of bends in looped DNA structures 

in vitro and in vivo. Rotationally phased mini-circular DNA’s might also find important 

applications for nano-scale construction and assembly of spatially organized materials. 
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3.7 Figures 

 

Figure 3.1: Scheme to determine the effect of bending on CPD yield in T11-tracts. A single 

strand 80-mer corresponding to one full turn of the central section of the 150-mer nucleosomal 

DNA that is complementary to the T11-tract was circularized by ligation using a ligation scaffold.  

The 80-mer was then annealed to increasing lengths of 5’-radiolabeled complementary strand 

containing a centrally located T11-tract to form DNAs with different degrees of bending because 

of the length of the rigid duplex strand and flexible single strand. The sites of the 5’- and 3’-ends 

of the n-mers are indicated with a forward slash.  Other features are as described in the Figure 2.3 

caption.
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Figure 3.2: Quantitative hybridization of single strand oligomers to circular DNA. Annealing 

was done with radiolabeled single strand (ss) oligomers (-) to 80-mer linear circular DNA (+) at a 

ratio of 1:20 to give double stranded circular duplex (ds).
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Figure 3.3: PAGE assay of CPD formation in the minicircular DNAs as a function of duplex 

length and temperature. The radiolabeled minicircular DNAs were irradiated with UVB light at 

0 oC and 40 oC, treated with T4-pdg, and electrophoresed.  The samples were loaded at different 

time intervals, so as to have the T11-tract cleavage bands appear at roughly the same location in 

the gel.

80-mer  70-mer   60-mer  50-mer  41-mer  28-mer 

0    40   0    40    0   40    0    40   0    40   0    40 
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Figure 3.4: Frequency of CPD formation as a function of duplex strand length and 

temperature. The lanes in Figure 8 were scanned and the CPD formation patterns for the T11-

tracts for a given duplex length at 0 oC (blue) and 40 oC (red) are superimposed on each other.
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Figure 3.5: Plots of the maximum peak position and standard deviation of the Gaussian fits 

to the CPD cleavage pattern for the circular DNAs. A) A plot of the position of maximum CPD 

formation from fitting the cleavage patterns to a Gaussian function.  B) The standard deviation of 

the Gaussian function. Data in blue are for 0 oC, data in red for 40 oC.
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Figure 3.6: Shifting of the T11-tract by half a turn of DNA shifts the CPD formation pattern towards the 5’ and 3’ ends. A) Gel 

electrophoresis of out-of-phase radiolabeled 80-mer linear duplex (Lane L) and 80-mer circular duplex (Lane C)B) Radio image of a 

PAGE gel of T4 pdg treated linear (L) and circular (C) forms of an 80-mer duplex containing an out of phase T11-tract that were irradiated 

at 0o and 40 oC for 40 min and 20 min, respectively.  C) Traces of the bands in the gel showing a shift of the bands in the out of phase 

circular form to the 5’- and 3’-ends compared to the major bands being in the center for the in phase form (Figure 3.4).  D)  The 80-mer 

sequence with an out of phase T11-tract was constructed by changing the section of the in phase sequence shown to the out of phase 

sequence shown below it.  
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Chapter 4 Modulation of Cyclobutane 

Pyrimidine Photodimer Formation and 

Deamination in d(TC)6 and d(TC)35 Tracts in 

a Nucleosome Core Particle 1 

4.1 Introduction 

The formation of cyclobutane pyrimidine dimers (CPD) by ultraviolet (UV) light speeds up C-to-

T mutations in p53 tumor suppressor genes associated with skin cancers. The initial C or 5-methly-

C (mC) in CPD rapidly deaminates into U or T within hours to days (1), directing the insertion of 

A in the opposite strand by polymerase η (2), and thus leads to characteristic C-to-T or CC-to-TT 

UV signature mutations associated with skin cancers (3) (Figure 4.1). Chemically, C or mC 

deamination occurs in three steps under acidic conditions: protonation of C (or mC) at N3 position, 

attack at C4 by a water molecule, and loss of ammonia to form a U (or T). In free DNA duplex, 

the deamination process depends on sequence context, temperature and buffer conditions. For 

example, the deamination rate of T=mC CPDs is approximately 25-fold faster when flanked 

directly by G’s than by A’s, T’s or C’s on the 3’-side, probably owing to catalysis by the O6 group 

of guanine (1). Furthermore, high salt concentrations slow down the deamination presumably by 

stabilizing the duplex structure and thereby inhibiting protonation of C and addition of water. 

Higher temperature or more acidic pH conditions create a favorable reaction environment and thus 

lead to faster deamination. In nucleosomes, another layer of complexity is added. Besides the 

factors mentioned above, deamination is also influenced by DNA structure and protein-DNA 

interactions that may determine DNA flexibility and reactivities. In regard to rotational setting, a 

                                                 
1 All contents in this chapter are in manuscript preparation and have not been published. 
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12-fold difference in deamination rate was found between inward and outward facing T=mCGs 

over a full helical turn in reconstituted nucleosomes (4), whereas a smaller fold change was 

determined from an in vivo study of deamination at TCG sites within the FOS promoter in HeLa 

cells (5).  

Poly d(TC) tracts are highly dispersed and abundant sequences in eukaryotic genomes and 

are involved in various biological processes such as DNA synthesis and transcription (6,7). 

Nothing is known, however, about deamination at CT=CT or TC=TC sites in general, nor in 

nucleosomes. One early study, determined the deamination half-life of C-containing CPDs in an 

E.coli plasmid without attention to sequence context, and concluded that the deamination occurs 

rapidly with a half-life of about 5 h at 37 °C (8). In another study, Pfeifer and coworker examined 

the deamination of tripyrimidine sites within exon 8 of human p53 gene, and found 10-30% 

deamination after 24 h for most sites (9). However, in that study, the possible effect of chromatin 

structure was not considered. Recently, two studies in our group discovered that the deamination 

rate varied with rotational position of TCG or TmCG sites in a nucleosome core particle and was 

greatest for outside facing positions (4,10).  

To efficiently study the deamination rates of highly enriched TC repeats and their 

correlations with nucleosome positioning at the same time, we designed nucleosomal DNA 

containing two poly d(TC) sequences, one with a poly(TC)6 and one with a poly(TC)35 tract. With 

the help of TG bending motifs (11), these sequences were incorporated into nucleosome core 

particles (NCPs) in vitro, with specific rotational orientation, and sampling half of all superhelical 

locations. We will show that nucleosomes modulate CPD deamination, but less strongly than for 

TCG sites. Also in contrast with TCG sites, for which the sites of preferred CPD formation (also 

most flexible sites in conformation) coincided with the sites of fastest deamination, we found an 
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opposite correlation with TCT sites. One possible explanation is that the deamination rate for TCG 

sites depends on the orientation of the G, whereas with TCT sites, deamination depends on water 

reactivity of the C.  

4.2 Material and methods 

4.2.1 Materials 

Oligodeoxynucleotides (ODNs) were purchased from Integrated DNA technologies (IDT). T4-pdg 

was prepared from a clone provided by Stephen Llyod as previously described (12). Photolyase 

was prepared from a clone provided by Aziz Sancar as previously described (13).  

4.2.2 Preparation of nucleosomal DNA containing d(TC)6-tract on dyad 

superhelix 

The 168-bp parental nucleosomal DNA duplex was synthesized by hybridization of 96-mer and 

95-mer ODNs (IDT) to form a 23-bp duplex at their 3’-ends by slowly cooling from 95 ℃ to room 

temperature in 50 mM NaCl, and extended by 3’ to 5’-exo- Klenow Fragment (New England 

BioLabs) in 50 mM NaCl, 10 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 100 μM dNTPs and 1 mM 

dithiothreitol (DTT), for 30 min at 37 °C. The 168 bp duplex DNA was then digested by EcoRI 

(Promega) in 90 mM Tris-HCl (pH 7.5), 50 mM NaCl and 10 mM MgCl2, for 30 min at 37 °C and 

cloned into pBlueScript II SK- vector DNA (Agilent) that had been restricted with EcoRI and then 

dephosphorylated with calf intestinal phosphatase (CIP) (New England BioLabs) in 100 mM NaCl 

50 mM Tris-HCl (pH 7.5), 10 mM MgCl2 and 1 mM DTT, for 30 min, at 37 °C, to prevent re-

circularization. The cloning was performed using 1:3 and 1:5 molar ratios of vector:insert with T4 

DNA ligase and 1 mM ATP at 10 °C overnight. The pBS vector with the d(TC)6 insert was then 

transfected into TOP10 chemically competent E.coli cells (from Invitrogen) and plated on solid 
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LB media (15 g/L agar, 25g/L LB broth, 100 μg/mL ampicillin). A clone containing the desired 

insert was identified by restriction analysis and the sequence verified by DNA sequencing. The 

150-bp nucleosomal DNAs were prepared from this plasmid by PCR amplification with LongAmp 

Taq DNA polymerase (New England Biolabs) for 35 cycles followed by 

phenol:chloroform:isopropanol (PCI) 25:24:1 extraction and ethanol precipitation. A typical 100 

μL PCR reaction contained 0.5 μM of forward and reverse primers, 300 μM of dNTPs, 300 ng 

template DNA, and 4 μL of DNA polymerase ((2.5 U/ μL) in supplied buffer. 

4.2.3 Preparation of nucleosomal DNA containing d(TC)35-tract 

The 150-mer single strand DNA containing d(TC)35 at the 5’end was prepared by equimolar 

ligation of 3 short ODNs with T4 DNA ligase and 1mM ATP in the presence of 2 DNA scaffolds 

at 10 °C overnight and purified by denaturing polyacrylamide gel electrophoresis (PAGE) on a 

10% acrylamide 0.33% bisacrylamide gel in 7 M urea in 100 mM Tris-borate 2 mM EDTA (TBE). 

Prior to ligation, 10% of the 6 μg of d(TC)35-containing ODN was 5’-32P labeled with [γ-32P] ATP 

(Perkin Elmer) by T4 polynucleotide kinase (Thermo Scientific). The final 150-mer product was 

purified from the gel by crush elution followed by PCI extraction and ethanol precipitation and 

then re-suspended in 100 μL of water. Single-round PCR synthesis was performed to produce a 

150-bp DNA duplex. A 500 μL reaction mix also contained 1X LongAmp Taq buffer (New 

England BioLabs), 300 μM of dNTP, 10 μg of the P1 primer complimentary to the 3’ end of the 

ligated sequence and 6 μL of polymerase (2.5 U/ μL). A single cycle (95 °C - 7 min, 58 °C - 40 

min and 68 °C - 15 min) was performed before terminating the reaction with 1% SDS. The sample 

was then PCI extracted, ethanol precipitated and re-suspended in 60 μL of 15% glycerol and 50 

mM NaCl, followed by a native PAGE (6% acrylamide, 0.2% bisacrylamide in 1TBE) 

purification, and was then taken up in 200 μL of 50 mM NaCl for further use. 
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4.2.4 Nucleosome reconstitution 

Nucleosome core particles (NCPs) were isolated and purified from chicken erythrocytes following 

a simplified procedure provided by Dr. Michael Smerdon. DNA duplex 150-mers corresponding 

to d(TC)6 and d(TC)35 were incorporated into the nucleosomes by a salt mediated exchange 

process. Briefly, 150 bp duplex was incubated with nucleosomes at various ratios in 300 μL of 2 

M NaCl, 10 mM Tris-HCl, 5 mM EDTA at pH 7.5 and room temperature for 2 h, and then dialyzed 

against 50 mM NaCl, 10 mM Tris-HCl, pH 7.5, at 4 °C overnight. The reconstituted NCPs were 

recovered from the dialysis tubing and equilibrated at 54 °C for 2 h to fix the nucleosomal phasing.  

The reconstituted particles were assayed by native PAGE (6% acrylamide, 0.2% bisacrylamide in 

1TBE), and the ratio of nucleosome-bound DNA to free DNA was quantified by Quantity One 

software. 

4.2.5 Hydroxyl radical footprinting and Maxam-Gilbert G sequencing 

Sodium ascorbate, Fe(NH4)2(SO4)2·6H2O and H2O2 (15 mM, 1.5 mM, and 0.18% final 

concentrations respectively) were quickly added to 100 μL of the nucleosome-bound DNA sample 

in 50 mM NaCl, 10 mM Tris-HCl, pH 7.5 reaction buffer with gentle vortexing after the addition 

of each reagent. The reaction was incubated for 120 s at room temperature and quenched by 

addition of glycerol and EDTA solution to final concentrations of 5% and 12 mM, respectively. 

The samples were electrophoresed on a native PAGE (6% acrylamide, 0.2% bisacrylamide in 

1TBE), and gel sections containing the nucleosome bands were excised, crushed, and soaked in 

1% SDS and 0.2 M NaCl. The proteins were then PCI extracted, and the DNA was ethanol 

precipitated. To align the bands, a Maxam-Gilbert G sequencing reaction was carried out on the 

nucleosome-free DNA sample in 50 mM cacodylate, 50 mM NaCl, 5 mM EDTA at pH 8.2. For a 

100 μL reaction, 1μL of dimethyl sulfate was added to initiate the reaction. After 120 s of 
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incubation at room temperature, 60 μL of mercaptoethanol was added to quench the reaction. The 

DNA was ethanol-precipitated and the resulting pellet was solubilized in 100 μL of 1 M piperidine, 

followed by 5 min heating at 90 °C and evaporating to dryness at 60 °C. 

4.2.6 T4-pdg assay for CPDs 

DNA substrates were irradiated with 302-nm UVB light (Spectroline TR-302) at 0 °C for a dose 

of 36 kJ/m2. Nucleosome-bound DNA was first PCI extracted twice, and ethanol-precipitated 

twice. The DNA samples were incubated with 8 μg of T4-pdg in 10 mM Tris-HCl, 50 mM NaCl, 

5 mM EDTA, pH 7.5 for 30 min at 37 °C to and then heated at 90 °C in 1M piperidine for 5 min 

to insure complete elimination of the sugar ring. Residual piperidine was evaporated by heating at 

60 °C in vacuo. The resulting pellets were brought up in 20 μL formamide-dye and loaded on a 

10% denaturing PAGE (7 M urea, 10% acrylamide, 0.33% bisacrylamide in 1TBE). 

4.2.7 Deamination assay 

Nucleosomes and DNA in deamination buffer (10 mM Tris-HCl, 50 mM NaCl, 0.5 mM EDTA, 

pH 7.2) were irradiated as described above. After irradiation, the sample was placed in a 37 °C 

water bath for the deamination time course. Aliquots of 50 μL were taken at time intervals and 

then quickly frozen before storage at -80 °C. After the last time point was collected, nucleosome 

samples were PCI extracted twice, and ethanol-precipitated twice.  Then all samples were brought 

up in 100 μL of the photolyase reaction mix (10 mM Tris-HCl, 50 mM NaCl, 5 mM EDTA, 5 mM 

DTT, pH 7.5). The completion point for deamination was determined with a separate aliquot after 

irradiation where the free DNA was isolated from the nucleosome sample as described above and 

brought up in 3 mM of 2-(N-morpholino) ethanesulfonic acid (Mes), 50 mM NaCl and 0.5 mM 
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EDTA, pH 6, at 55 °C for 48 h. After deamination, the sample was ethanol precipitated and re-

suspended in 100 μL of the photolyase reaction mix. 

4.2.8 Photoreversion and uracil-DNA glycosylase cleavage 

Photolyase (2 μg) was added to each 100 μL sample followed by pre-incubation in the dark for 7 

min at room temperature. The samples were then laid out underneath a 352-nm light for 1 h to 

catalyze the photoreversion. The reaction was terminated with addition of 1% SDS before PCI 

extraction twice and ethanol precipitation twice. Each pellet was re-suspended in 100 μL of Uracil-

DNA glycosylase (UDG) buffer (supplied) and 2 μL of UDG (New England BioLabs), and then 

incubated at 37 °C for 1 h. the reaction was then stopped with 1% SDS before PCI extraction and 

ethanol precipitation. Each sample was re-suspended in 1M piperidine and heated at 90 °C for 5 

min to insure complete elimination of the sugar ring. Residual piperidine was evaporated by 

heating at 60 °C in vacuo. The resulting pellets were brought up in 20 μL formamide-dye and 

loaded on a 10% denaturing PAGE (7 M urea, 10% acrylamide, 0.33% bisacrylamide in 1TBE). 

4.2.9 Rate constant calculation 

The gel bands corresponding to deamination sites were integrated following phosphorimaging by 

the BioRad Quantity One program. The deamination rate constants were then obtained from the 

slope of a linear least squares fit of the log of the fraction of remaining C versus deamination time, 

Ln (1-Ut/U∞) = - kt, where t is deamination time, k is deamination rate constant, Ut is amount of 

deaminated C at time t, U∞ is total amount of C obtained from complete deamination. Deamination 

half-life equals to Ln (2/k), error bars were calculated by linear least squares curve fitting function. 
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4.3 Results and Discussion  

4.3.1  Design and synthesis of DNA substrates 

The main purpose of this study was to determine the deamination rates for C-containing CPDs in 

(TC)n tracts in a nucleosome to gain more insight about the effect of chromatin structure on the 

frequency of mutations rising from a deamination-bypass mechanism. Nucleosome core particles 

were designed to contain TC repeats at various superhelix locations (SHLs). In our first design, a 

d(TC)6-tract was centered on the dyad to cover all rotational positions at SHL 0. To translationally 

and rotationally position the CPD sites, TG bending motifs, (T/A)3NN(G/C)3NN, were 

incorporated every 10 bp in the flanking DNA (11,14). With this motif, bending is toward the 

major groove at the central GC base pair of the (G/C)3 sequence and toward the minor groove at 

the central TA base pair of the (T/A)3 sequence (Figure 4.2A). In this way, the d(TC)6 tract spans 

nucleotide positions from +6 to -5 rotational (Figure 4.2C), with the nucleotides to the 5’-side 

assigned negative numbers, and to the 3’-side, positive numbers. EcoRI digestion sites were 

engineered into the ends of the sequence for cloning, with six extra bp’s added to the end to ensure 

efficient digestion. The designed 168-mer DNA was prepared by primer extension of two 

overlapping 95-mer and 96-mer synthetic ODNs (Table 4.1). The EcoRI digested 168-mer was 

cloned into the EcoRI site of a pBlueScript SK- vector. Individual clones were verified by 

sequencing (Figure 4.3). 

 In our second design, a 70-bp long poly(TC)35 tract was incorporated into a 150-bp 

nucleosomal DNA by scaffold-directed ligation (Figure 4.2B, Table 4.1 and Figure 4.4). The TG 

bending motif was used again to rotationally position the d(TC)35 tract from nucleotides -7 to -76, 

covering SHLs from -1 to -7 along a nucleosome core particle (Figure 4.2C).  
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4.3.2  Nucleosome reconstitution and assay by hydroxyl radical footprinting 

To determine the optimal conditions for NCP reconstitution, the 150-bp DNA duplexes were 5’-

end labeled and titrated with NCPs isolated from chicken erythrocytes under the high salt 

conditions that promote nucleosomal DNA exchange, followed by lowering of the salt 

concentration and thermal annealing (15). Electrophoresis on a native gel showed that about 95% 

of both 150-mer DNAs could be incorporated into a single NCP band at an NCP:DNA ratio of 

600:1 (Figure 4.5). To determine the rotational and translational setting of the DNA on the 

nucleosome, the reconstituted NCPs were subjected to HO• footprinting. The HO• cleavage pattern 

exhibited a pronounced 10–11 bp periodicity, indicating that the 150-mer DNAs were rotationally 

phased. The cleavage pattern was mapped onto the DNA sequence by alignment with the Maxam-

Gilbert G reaction bands (Figure 4.6B and Figure 4.14A). The HO• footprinting pattern was used 

to verify the rotational setting of the TC-tract based on the expectation that the periodic modulation 

of the HO• cleavage pattern would only be apparent where the DNA is in direct contact with the 

histone core. Hydroxyl radicals preferentially cleave DNA at sites where the sugar phosphate 

backbone is most exposed and faces away from the histone surface, and is inhibited where it faces 

the histone surface. For the poly(TC)6-tract on dyad position, one can clearly see the expected 

seven repeats of HO• cleavage bands above (to the 3’-side of) the band at the TC-tract region, with 

the last band appearing at the edge of the large uncleaved band corresponding to full length DNA. 

For the d(TC)35-tract, we were worried that, with flanking TG motifs on only one side of the TC 

repeats, that the long 70-bp TC-tract would not be fully bent around the nucleosome. Nevertheless, 

the HO• cleavage pattern shows 14 clear repeats, indicating a complete rotational phasing of the 

full-length DNA. These results, coupled with the observation of a single nucleosomal band in the 

electrophoresis gel following nucleosomal DNA exchange (Figure 4.5) indicates that the 150-mer 
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DNA’s were all largely adopting a single, centered translational position that maximizes histone–

DNA contacts. Had the DNA shifted by 10 bp to either side, contact between one turn of the helix 

and the nucleosome would have been lost, which would be thermodynamically unfavorable. The 

maximum of HO• cleavage band is shifted by about two nucleotides to the 3’-side of that for CPD 

formation, which is consistent with what was observed for CPD formation in a T11-tract in a 

similarly positioned nucleosome core particle (16).  

4.3.3  CPD formation in free and nucleosomal DNA containing d(TC)6-tract 

The site of CPD formation was assayed by T4-pdg cleavage, a glycosylase that cleaves the the 

DNA at the 5’-pyrimidine of the CPD. This enzyme first hydrolyzes the N-glycosidic linkage of 

the 5’-pyramidine of the CPD, and then causes strand cleavage (Figure 4.6A) by an associated 

lyase activity. The lyase first yields a 5’-phosphate-terminated end by a -elimination reaction, 

which is followed by formation of a 3’-phosphate terminated end by a slower -elimination 

reaction (17). In a previous study of CPDs formed in T11-tract (16), we found that the CPDs in free 

DNA duplexes showed essentially the opposite intensity pattern compared to that in nucleosome-

bound DNA. In free DNA, CPDs form with highest frequency at the 3’ end, decreasing to a 

minimum in the center, and increasing slightly at the 5’ end, as observed by others in T-tracts of 

various lengths (18,19). In nucleosome-bound DNA, the band pattern changed dramatically, with 

the highest CPD frequency in the middle of the T-tract and tapering off towards the 5’ and 3’ ends. 

Unlike the T11-tract, the d(TC)6-tract showed an even distribution of CPDs in the free DNA, which 

is probably because TC tracts do not adopt the unique structure of T-tracts in solution at low 

temperature, but in nucleosomes, they both showed the same CPD pattern suggesting that they 

have similar conformation and reactivity (Figure 4.9A). 
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 We also compared the CPD yields in d(TC)6-tract with previous studies at TCG sites 

(Figure 4.10) (4). Both results showed the same CPD pattern with highest CPD yield at position 

+2 that corresponds to an outward-facing DNA backbone, and decreasing yields towards the ends. 

Despite the difference between the 3’-flanking bases, the CPD yields showed great similarity 

between TCT and TCG sites, suggesting that the CPD formation is irrelevant with sequence 

context. 

Next, we compared individual C-containing CPD yields in free and nucleosome-bound 

d(TC)6-containing DNA, by normalizing all yields to the T=C CPD formed between -10 and -11, 

which had the same yield in DNA and in an NCP as determined in a previous study (16). It can be 

clearly seen from Figure 4.6B and Figure 4.8 that a T=C CPD forms more frequently than a C=T 

CPD in free DNA with about a 1.5-fold difference at all positions. A similar difference between 

the yields for CPD formation at TC and CT sites in AT=mCA and AmC=TA in duplex DNA have 

also been observed (1). In nucleosomes, the relative CPD yield for the TC and CT sites in the 

d(TC)6-tract varies from 0.6- to 2.4-fold depending on the rotational positions (Table 4.2). These 

differences can be understood to result from the fact that the position of the CPDs containing the 

same C differ in position by one nucleotide, leading to a shift in the CPD formation pattern. 

4.3.4  Deamination of cytosine in CPDs in a d(TC)6-tract 

To determine the effect of the nucleosome on the deamination rate of the C-containing CPDs, we 

used a combined enzymatic electrophoresis assay that detects deamination through cleavage at 

uracils by uracil DNA glycosylase (UDG), following photoreversion of the CPDs by DNA 

photolyase. Although T4-pdg assays can distinguish between CPD formation at T=CT and TC=T 

sites, because they give different length products, UDG cannot distinguish between a uracil having 

arisen from a T=CT and TC=T CPD. Therefore, we decided to use the combined yields of CPDs 
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at the T=CT and TC=T sites in our analysis of deamination rates as both CPDs contribute to the 

deamination of the same C. In the following analyses, if not otherwise specified, CPD yields at 

TCT sites will correspond to the combined yields as described. As can be seen in Figure 4.9A, the 

highest CPD yield in nucleosome-bound DNA appears near the middle of the TC-tract with a 4.3-

fold increase as compared to that of free DNA. The average yield per site in nucleosome-bound 

DNA is two times greater that in free DNA, which is consistent with the previous finding in 

nucleosome-bound T11-tract at SHL 0 (16).  

The deamination rates of the cytosines in the C-containing CPDs were determined by 

tracking the conversion of C to U by an enzyme-coupled gel electrophoresis assay (Figure 4.6A). 

In the first step, free or nucleosome-bound 150-mer DNA duplexes were irradiated with 302 nm 

light at 0 °C to minimize deamination of the cis-syn CPDs produced. The samples were then 

incubated at 37°C and pH 7.2 to allow deamination to occur, and aliquots were removed at various 

time intervals. An additional aliquot was made to undergo complete deamination for the 

calculations of rates constants and half-lives, by lowering the pH to 6 and heating the sample at 55 

°C for a minimum of 48 h. The aliquots were then phenol extracted to remove the histone proteins, 

ethanol precipitated and incubated with photolyase under black light to photorevert the cis-syn 

CPDs back to two individual pyrimidines. The samples were then treated with UDG to form an 

abasic site (AP site) at the site of the U. The AP site was then converted to a strand cleavage site 

by hot piperidine treatment. Non-photorevertible dipyrimidine photoproducts, such as (6–4) and 

Dewar DNA photoproducts, cannot be cleaved by UDG; though they can lead to strand cleavage 

upon hot piperidine treatment. If they were present, however, they would not result in deamination 

time dependent cleavage, and thus would not affect the deamination rate measurements. The 
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digested DNA was electrophoresed on a denaturing gel (Figure 4.6C) to separate the cleavage 

products, which are then quantified by phosphorimaging. 

 The rate constants for C deamination were determined from the slopes of lines fit to the 

natural log of the fraction of undeaminated cytosines in CPDs (Figure 4.6D and Figure 4.7) as 

described in the Experimental Procedures section. The initial amount of U present was non-zero 

and varied between samples, likely due to varying amounts of deamination that occurred during 

purification steps prior to photoreversion with photolyase, or due to piperidine cleavage of (6-4) 

or Dewar photoproducts. Table 4.3 summarizes the deamination half-lives, as well as relative CPD 

yields at nucleosomal SHL 0 and in free DNA. Although as large as a 4.3-fold increase was seen 

with CPD frequency in nucleosomes compared to free DNA at +2 position (Figure 4.9A), there 

was much less of a difference in the deamination rates between free and nucleosomal DNA (Figure 

4.9B). The same was true for +4, 0, and -2 positions, where CPD yields in nucleosomes are 2.1-, 

2.9-, and 1.6-fold greater than that in free DNA, while the corresponding differences in 

deamination rates were only 0.7, 1.0, and 0.9, respectively. Comparing the general pattern of 

relative CPD formation and deamination half-lives, one can clearly see greater modulation of CPD 

formation by rotational position than for deamination. These differences are also reflected in the 

relative standard deviations (RSD) for CPD formation and deamination (Table 4.4). There was a 

38% RSD for CPD formation as a function of position in the nucleosome, compared to 8.3% in 

free DNA, which is an almost 5-fold difference. A RSD of 23% in deamination half-lives in the 

nucleosome, however is only 2-fold greater than in free DNA (RSD 10%). These results further 

confirm that nucleosome structure is capable of modulating CPD formation and deamination, but 

that the modulating effect is greater on CPD formation than deamination. 
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The rates of CPD formation and deamination appear to correlate in an opposite manner. In 

nucleosomes, CPD formation is maximal in the middle of the d(TC)6 tract (+2 and 0 positions), 

tapering off towards 5’ and 3’ ends (Figure 4.9A and Figure 4.12). An opposite pattern can be seen 

for the deamination rate constants as a function of rotational position, where the slowest 

deamination coincides with that for maximum CPD formation (+2 and 0 positions) (Figure 4.12). 

In free DNA, the deamination rates, like CPD formation, are essentially independent of position 

(Figure 4.9). What is very curious is that the rates of T=C/C=T deamination do not follow the 

pattern of deamination observed for T=mCG sites studied previously (Figure 4.11) (4). For T=mCG 

sites, the deamination rate directly correlated with CPD formation frequency and was maximal for 

outside facing TmC sugar phosphate backbones. The enhanced rate at these positions was 

correlated with increased flexibility of the DNA.  In contrast, deamination at T=C/C=T sites was 

slowest at these sites. We suspect that other structural or dynamic properties other than sugar 

phosphate backbone flexibility dominate the deamination process for d(TC)6.  

4.3.5  Mutagenic potential of TCT sites as a function of rotational position 

Given that UV-induced C-to-T mutations arise principally from the deamination bypass 

mechanism, the mutagenic potential of TCT sites as a function of rotational position is expected 

to depend on the rate of photoproduct formation, deamination, repair and replication. We have 

shown that the rates of photoproduct formation and deamination are affected by rotational 

positions, and that the nucleosome modulating effect on formation is much larger than on 

deamination at TCT sites. The mutagenic potential corresponding to the combined rates of the 

photoproduct formation and deamination would therefore largely conform to the trend of the 

photoproduct formation, and greatly increases for TCT sites positioned away from the surface (also 

the most flexible conformation). The largest mutagenic potential based on the products of the 
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photoproduct formation and deamination rates is at position +2, which shows almost a 4-fold 

higher mutagenic potential compared to free DNA (Figure 4.13). However, as large as a 7-fold 

increase was observed at the same position for a TCG site, owing to the significantly increased 

deamination rate caused by the catalysis of 3’-flanking G (4).  

4.3.6  CPD formation and deamination of cytosine in CPDs in a d(TC)35-tract 

To determine whether the rotational dependence of the deamination rates observed in the d(TC)6-

tract at the dyad also extends to other superhelical sites, we constructed a 70-mer d(TC)35 tract to 

span the all the remaining superhelical locations (-1 to -7) to the 5’-side of the d(TC)6 sequence at 

SHL 0. Knowing that long d(TC)-tracts are known to arrest DNA synthesis near the middle of the 

sequence due to formation of triplexes (6), we prepared the d(TC)35 duplex by scaffold-directed 

ligation, followed by a single-round of PCR, to reduce the synthesis errors caused by repetitive 

thermal cycling. The HO• cleavage pattern confirmed that the poly(TC) sequence was being held 

with the expected rotational phasing. In the nucleosome-bound DNA, the CPD formation pattern 

exhibits a pronounced 10-bp periodicity from SHL -3 to -6, with CPD formation peaks at exactly 

-30, -40, -50 and -60 (Figure 4.14A and Figure 4.15), in perfect alignment with the phasing 

predicted to be induced by the TG bending motifs placed every 10-bp in the 3’-side of the 

sequence. An unusually large amount of CPDs form at nucleotide position -40, showing a 4-fold 

increase compared with average CPD yields in nucleosomes, possibly due to the out-extending 

H2A tail at this region. 

Deamination half-lives were determined by 3-point fitting of 46, 70 and 92 h deamination 

data (Figure 4.16). The sites of fastest deamination appeared at -17, -27 and -37, which are all 3 

nucleotides to the 3’ of the base pair whose major groove faces the nucleosome, as it does at the 

dyad. These sites therefore correspond to -7 and +3 relative the dyad, and are consistent with the 
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results of d(TC)6 experiment, where -7 and +4 positions showed shortest half-lives of 60 and 66 h, 

compared with 57 h at -17 in d(TC)35. 

4.4 Conclusion 

By the use of d(TC)6 and d(TC)35 tracts incorporated into nucleosomes, we have shown that 

rotational position in a nucleosome affects the rates of CPD formation and deamination at the TCT 

sites within every superhelical turn from SHL 0 to SHL -7. We also determined that the 

nucleosome modulated CPD formation at TCT sites to a greater extent than deamination. 

Furthermore, deamination was slowest at sites where CPD formation was the greatest, and fastest 

at sites where CPD formation was least, which is opposite to what was found for CPDs formed at 

ATCG sites. Although phosphate backbone flexibility and conformation seem to be the major 

controlling factors for CPD formation at both TCG and TCT sites, deamination appears to be 

controlled by different factors. For ATCG sites, the strong effect of rotation on the rate of 

deamination of the C may have to do with the presence of the G, and in its absence, some other 

factors dominates that shows an opposite dependence on rotational position. The origin of UV 

signature C to T mutations are widely accepted to arise from two main pathways: (1) the error-

prone DNA replication at CPD sites; and (2) the error-free translesion synthesis at deamination 

sites. This combined study on CPD formation and deamination at d(TC)n tracts suggest that C-to-

T mutations in such sequences in nucleosomes would largely depend on the CPD formation rate, 

rather than the deamination rate, because the nucleosome modulating effect on formation is much 

larger than on deamination at TCT sites. 
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4.7 Tables and Figures 

 

Figure 4.1: Deamination-bypass mechanism for UV-induced C to T mutations. (A) cis-syn 

CPD deamination at a TC site. (B) formation of UV-induced C to T mutation at a TC site in which 

polymerase η inserts an A opposite the U resulting from deamination of the C in the CPD formed 

by UV light.
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Figure 4.2: Nucleosomal DNA sequence design. (A) A 168-mer DNA was designed to have a 

centrally located d(TC)6-tract (underlined), terminal EcoRI restriction sites (green italic), phased 

minor groove bending (T/A)3 sequences in red and major groove bending (G/C)3 sequences in 

blue. The C in orange in the d(TC)6-tract corresponds to the position at which the major groove is 

expected to bend towards the histone surface at the dyad axis. (B) A 150-mer DNA was made from 

3 oligomers by scaffold-directed ligation: an 80-mer with d(TC)35-tract, a 30-mer with 5’-

phosphate and a 40-mer with 5’-phosphate. Other features are as described in (A). (C) In our 

design, d(TC)6 covers dyad SHL from +6 to -5, d(TC)35 covers SHLs from -1 to -7. The SHLs are 

identified by the number of helical turns from the dyad axis on the blue strand containing the 

d(TC)6 tract. They are negative to correspond with the negative numbers assigned to the 

nucleotides on the d(TC)6-tract strand that are 5’- to the C at the dyad axis which is assigned as 0. 

The -3(inside) and +3(outside) nucleotide positions are shown in blue. The positions at which the 

major and minor grooves face the histone surface are indicated by M and m, respectively, and are 

color coded blue and red to match the major and minor groove bending motifs in (A) and (B).
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Figure 4.3: Sequencing results for clone 16 used in this study. 
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Figure 4.4: PAGE analysis of 150-mer DNA duplex containing d(TC)35-tract. (A). Scaffold-

mediated ligation products loaded on a 10% denaturing PAGE. (B). Single-round of PCR products 

loaded on a10% native PAGE. 
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Figure 4.5: PAGE analysis of reconstituted nucleosomes. Greater than 95% incorporation was 

achieved after nucleosome reconstitution for d(TC)6-DNA (A) and d(TC)35-DNA (B).
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Continued on next page. 
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Figure 4.6: Determination of deamination rates. (A) General scheme for the T4-pdg assay to 

quantify CPD formation (top) and the photolyase/UDG cleavage assay to determine deamination 

rates (bottom). Free 150-mer duplex DNA containing d(TC)6-tract or chicken nucleosomes that 

had been exchanged with 150-mer duplex DNA were irradiated to form T=CT or TC=T CPDs that 

were allowed to deaminate over time, converting C to U within the CPD. At specific time intervals 

aliquots of the reaction were removed and photoreverted with photolyase and cleaved by UDG. 

(B) PAGE analysis of hydroxyl radical footprinting of nucleosome core particles (lane H) and 

assay of CPD formation in free (lane D) and nucleosome-bound DNA (lane N). Lane L is the 

Maxam Gilbert G ladder. (C) PAGE analysis of deamination time course (hours) with reconstituted 

nucleosomes. The last lane C represents complete deamination. Panel (D) shows the plot of the 

extent of deamination with time that has been fit to a first order process at CTC(+2)T.
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Figure 4.7: PAGE analysis of CPD deamination in free DNA containing d(TC)6-tract. 

Numbers on top indicate deamination time in hours, lane C is the deamination completion point.
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Figure 4.8: CPD yields for T=CT and TC=T sites as a function of rotational position in 

d(TC)6-NCP. The difference inmaxima reflects the fact that the TC and CT CPDs differ in position 

by one nucleotide 
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Figure 4.9: Photoproduct yield and deamination half-lives as a function of nucleotide 

position. (A) Bar graph of T=C and/or C=T CPD relative yield at each rotational position 

compared to that at T=C(-11)G. A previous study showed that CPDs between -12 and -11 

nucleotide positions formed with equal frequency between free and nucleosome-bound DNA. (B) 

Bar graph of the deamination half-life at 8 rotational positions.
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Figure 4.10: Comparison of relative yields between TCT and TCG sites. Top bar graph shows 

relative CPD yields at TCT and TCG sites within d(TC)6-tract. Bottom bar graph shows relative 

CPD yields at TCG sites in a previous study by our group. 

 

 

 

 
Figure 4.11: Comparison of deamination rate constants between TCT and TCG sites. Top 

bar graph shows relative CPD yields at TCT and TCG sites within d(TC)6-tract. Bottom bar graph 

shows relative CPD yields at TCG sites in a previous study by our group.
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Figure 4.12: Correlation between deamination rate constant and CPD formation yields as 

function of rotational positions at TCT sites within d(TC)6-tract. 

 

 

 

 
Figure 4.13: Mutagenic potential of TCT sites as a function of rotational position. The product 

of the relative rate of CPD formation and CPD deamination is plotted versus rotational position. 
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Figure 4.14: PAGE analysis of CPD deamination in free or nucleosome-bound DNA 

containing d(TC)35-tract. (A) Lane H: hydroxyl radical footprinting of nucleosome core particles; 

Lane D and N: assay of CPD formation in free and nucleosome-bound DNA; Lane L: Maxam 

Gilbert G ladder. (B) deamination time course (hours) with reconstituted nucleosomes. The last 

lane C represents complete deamination. Lane PL: whole picture of deamination pattern on 

nucleosome-bond DNA; Lane T4: whole picture of CPD pattern on nucleosome-bond DNA. 
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Figure 4.15: CPD formation as a function of nucleotide position in d(TC)35-tract. 

 

 

 

 
Figure 4.16: Deamination rate constants as a function of nucleotide position in d(TC)35-NCP. 
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Table 4.1: Primer set and scaffold DNA used in synthesis of d(TC)6- and d(TC)35-contatining 

nucleosomal DNA.
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Table 4.2: Fold change in CPD yields between T=CT and TC=T at TCT sites.  
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Table 4.3: Nucleosome rotational positioning effect on photoproduct yield and deamination 

half-life.
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Table 4.4: Relative CPD yields and deamination times and standard deviations for all 4 

CTCT sites within d(TC)6-tract.
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Chapter 5 Summary and Future Research 

5.1 Summary 

Cyclobutane pyrimidine dimers (CPDs) are the most abundant UV-induced DNA lesions, and 

CPDs formed at C-containing sites are also the ones that are most closely associated with skin 

cancer induction. The mutagenicity of a particular CPD will depend on its induction frequency, 

deamination rate, repair rate and DNA damage polymerase bypass rate. To study the effects of 

nucleosome translational and rotational positions on T=T CPD formation and deamination 

systematically and efficiently, we designed a circular permutation synthetic strategy for the rapid 

preparation of the substrates with any translational or rotational position. We found that 

nucleosome positioning greatly altered the T=T CPD distribution pattern in a T11-tract at all seven 

helical turns located across one half of a symmetric nucleosome core particle compared to free 

DNA. Compared with its characteristic pattern in free DNA, T=T CPD distributions within each 

helical turn are dramatically changed, favoring the middle of the T11-tract, correlating with outside 

positions. While raising the temperature changed the CPD pattern in free DNA, the pattern was 

temperature invariant in the nucleosome. Irradiation of a circular DNA corresponding to one full 

turn of DNA in the nucleosome resulted in the same pattern as in the nucleosome proving the 

dominant role of DNA curvature in determining CPD distribution.  

The CPDs of TC or CC sites have been correlated with C-to-T mutations. Unlike T=T 

CPDs that are stable, the C in C-containing CPDs readily deaminates to U within hours to days, 

which then directs the insertion of A during bypass by DNA polymerase eta, resulting in the 

characteristic C-to-T signature mutation of UV light. In Chapter 4, we studied the deamination of 

TC CPDs at all rotational positions in the nucleosome using DNA sequences containing poly (TC)n 
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tracts, and found that, compared with free DNA, nucleosomes can only moderately modulate 

deamination rates and that the modulation is opposite that for CPD formation. Because the 

modulation on formation is much stronger than on deamination in nucleosomes, the net 

mutagenicity of d(TC)n-tracts mainly depends on the photoproduct formation rates with high 

mutagenic potential at outward-facing nucleotide positions. 

5.2 Future Research 

5.2.1 Quantitative analysis of parameters that can alter deamination kinetics 

of C-containing CPDs in nucleosomes 

In free DNA, the deamination rates of C-containing CPDs highly depend on their flanking 

sequences, salt concentration, temperature, and other factors (1). The same systematic 

investigation of the effects of these factors on deamination, however, is lacking within 

nucleosomes and worth studying, because these factors are associated with nucleosome structure 

stability. It would also be interesting to know the extent to which other types of DNA 

photoproducts, such as (6-4) PPs and Dewar photoproducts, are influenced by nucleosome 

structure, sequence context, salt and temperature. Deamination of C-containing CPDs is subject to 

a complex interplay of various factors, and dissecting the contributions of these factors 

quantitatively will enhance our understanding of deamination process, and furthermore, how to 

control them. 

5.2.2 Use of minicircular DNA to study bending effects on deamination and 

other reactions of DNA 

Before the establishment of our DNA minicircular model, a protein-free DNA loop held by lambda 

repressor was used to assess the effects of DNA curvature on pyrimidine dimer formation (2). The 

exact shape, curvature, and rotational phasing of the DNA in the lambda repressor system is 
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unknown, however, and therefore cannot be directly correlated with nucleosome core particles. 

Our minicircular DNA model incorporates exactly a complete turn of nucleosomal binding DNA, 

and faithfully reproduces the pattern of CPD formation in nucleosomes. Such a minicircle should 

therefore, be of general value for assessing the effects of nucleosome curvature on DNA 

modifications, such as hydrolytic deamination, by examining the bend-dependent pattern of CPD 

formation.   

5.2.3 Crystal structure analysis of site-specifically photodamaged nucleosomes 

There are numerous crystal structures of nucleosome core particles in the Protein Data Bank (PDB), 

varying in resolution, DNA sequence and nucleosome source. These structures can contribute to 

the understanding of nucleosome assembly (3), DNA sequence-dependent binding affinity (4) and 

positioning (5). Structures of nucleosome-containing defects, especially UV lesions, are rare in 

PDB (6,7). The difficulty resides in synthesis of nucleosome-binding DNA containing site-specific 

UV damages or other lesions. So far there are two major ways to prepare such DNA substrates: i) 

Use dinucleotide phosphoramidite building blocks, such as developed for the cis-syn thymine 

dimer (8) and 6–4PP (9) for solid-phase DNA synthesis technology; ii) Irradiate with UV the 

oligonucleotides containing photodamage-forming sites and then elongate to desired length by 

ligation (10). Both ways are subject to yield and length limitations, preventing their application in 

preparing nucleosome crystal structures. It was only recently that Osakabe and coworkers 

determined the nucleosome structure containing 6–4PPs to elucidate the lesion recognition by UV-

damaged DNA-binding (UV-DDB) in chromatin (6). Compared with damage recognition and 

repair, we are most interested in the structure distortion induced by DNA photodimers and are 

currently working on crystalizing nucleosomes containing the T11-tract, in order to explain the 
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unusual shifts and abnormalities found in CPD formation patterns at different superhelical 

locations and to better understand how TG-motifs phase DNA on a nucleosome (11). 
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